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A dynamic ocean management tool to reduce bycatch
and support sustainable fisheries
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Seafood is an essential source of protein formore than3billion peopleworldwide, yet bycatch of threatened species in
capture fisheries remains a major impediment to fisheries sustainability. Management measures designed to reduce
bycatch often result in significant economic losses and even fisheries closures. Static spatial management approaches
can also be rendered ineffective by environmental variability and climate change, as productive habitats shift and
introduce new interactions between human activities and protected species. We introduce a new multispecies and
dynamic approach that uses daily satellite data to track ocean features and aligns scales of management, species
movement, and fisheries. To accomplish this, we create species distribution models for one target species and three
bycatch-sensitive species using both satellite telemetry and fisheries observer data. We then integrate species-specific
probabilities of occurrence into a single predictive surface, weighing the contribution of each species bymanagement
concern.We find that dynamic closures could be 2 to 10 times smaller than existing static closures while still providing
adequate protection of endangered nontarget species. Our results highlight the opportunity to implement near real-
timemanagement strategies that would both support economically viable fisheries andmeetmandated conservation
objectives in the face of changing ocean conditions. With recent advances in eco-informatics, dynamic management
provides a new climate-ready approach to support sustainable fisheries.
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INTRODUCTION
Unsustainable harvest of long-lived ocean predators has resulted in
contemporary populations that are a fraction of their baseline bio-
mass (1–4). The loss ofmarine predators can result in ecosystems cross-
ing tipping points from healthy to degraded states and can lead to a
significant loss of ecosystem services (5, 6). Even in fisheries where tar-
get fish stocks are currently managed at sustainable levels (2, 6, 7), in-
cidental capture of nontarget species (“bycatch”) remains a significant
global problem, threatening many populations of marine mammals,
turtles, seabirds, and sharks (8–11). In addition, climate variability
and change can create additional risks as productive pelagic habitats
shift (12, 13), introducing new ecological interactions (14) and an-
thropogenic threats (15).

Bycatch mitigation solutions have included changes in fishing gear
and methodology, acoustic deterrents, and temporal and spatial man-
agement measures such as marine protected areas closed to fishing
(8, 16). However, spatial management approaches remain tied large-
ly to static boundaries and coarse temporal scales (17), although the
fluidity of interactions among marine predators and their environ-
ments has long been recognized (18, 19). Consequently, fixed time-
area closuresmay not always encompass the core habitat of species of
concern andmay unnecessarily restrict fishing activity when bycatch
risk is low. While many of these approaches have been successful for
single species, managers are often faced with trading off protection
of multiple protected species with sustaining economically viable
fisheries (8, 9). Dynamic ocean management is an example of an eco-
logical informatics (“eco-informatics”) approach that uses near real-time
data streams to support sustainable use of marine resources (17, 19–22).
Dynamic oceanmanagement approaches are robust to climate variabil-
ity and change, as they account for speciesmovement or distributions at
scales matching those of human activities in the oceans (12, 13, 15, 23).
Here, we present a multispecies dynamic ocean management approach
designed to address the long-standing problem of how to balance sus-
tainable target catch with protected species bycatch.

We focus on theCalifornia drift gillnet (DGN) fishery as a case study
in a highly dynamic pelagic system. The fishery targets broadbill sword-
fish (Xiphias gladius) in the California Current, a highly productive
upwelling ecosystem and globally significant hotspot of marine bio-
diversity (24). An underexploited and economically valuable sword-
fish stock is targeted through overnight deployment of large mesh
gillnets of several kilometers in length. This indiscriminant fishing
technique can result in bycatch of protected species such as logger-
head (Caretta caretta) and leatherback (Dermochelys coriacea) turtles,
small delphinids, beaked whales, and California sea lions (Zalophus
californianus; Fig. 1). Because bycatch rates have exceeded manage-
ment targets, the fishery has been legally mandated to implement mit-
igation measures (16, 25), including gear modifications and a vast static
seasonal area closure [Pacific Leatherback Conservation Area (PLCA);
552,000 km2] implemented in 2001, designed to avoid critically en-
dangered leatherback turtles and beaked whales in California waters
(16, 25, 26). Nonetheless, catch rates of some nontarget species have re-
mained high (25). While these management actions have successfully
minimized bycatch of leatherback turtles, as intended, they have also
resulted in a downsizing of the fishery by 90%, leading to harvest levels
well below the sustainable swordfish quota (26), challenging the eco-
nomic viability of this fishery.

To address this problem, we take a novel, data-driven, multispecies
approach that allows for reduction of bycatch rates while maintaining
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quota catch. This approach integrates multiple data streams to create
an automatable tool that can predict daily relative catch and bycatch
probabilities at previously unachievable spatial and temporal scales
and provide these predictions to end users in near real time. We also
use hindcasts to explore the dynamic nature of habitat intra- and in-
terannually and to assess the efficacy of this tool by comparing its
potential for mitigating bycatch relative to the existing static time-
area closure (26).
MATERIALS AND METHODS
Weused a data-driven,multispecies predictive habitatmodeling frame-
work termed EcoCast to create daily predictive surfaces that quantify
relative target catch-bycatch probabilities over the domain of the
fishery. We first determined habitat preferences of the target species,
broadbill swordfish, and three non-target species that interact with
the fishery [leatherback turtle, blue shark (Prionace glauca), and Cal-
ifornia sea lions].We used two independent species distribution data
sets—National Oceanic and Atmospheric Administration (NOAA)
fisheries observer data from the DGN fishery (1990–2014) and
satellite-linked tracking data collected during the Tagging of Pacific
Predators (24) program (2001–2009)—to determine the species’ pres-
ence and absence and to sample contemporaneous environmental
Hazen et al., Sci. Adv. 2018;4 : eaar3001 30 May 2018
conditions (Fig. 1 and fig. S1; see Supplemental Methods). The fishery
had observers on board for 4 to 23% of the vessels annually from
1990 to 2014, and these data were used to derive swordfish catch
(n = 5430 catch events), blue shark bycatch (n = 4591 catch events),
and absence sets with no target or bycatch of species (n = 4074 and
4931 sets for swordfish and blue sharks, respectively) for use in species-
specific models [see the study of Scales et al. (20)]. Sample sizes of
bycatch events for sea lions (n = 157 catch events) and leatherback
turtles (n = 25 catch events) were insufficient to build robust models.
Argos tracking data were obtained for blue sharks (n = 70 individuals),
female California sea lions (n = 75 individuals), and leatherback turtles
(n= 20 individuals). Details on taggingmethodology are available for
sea lions (27, 28), leatherback turtles (26, 29), and blue sharks (24).
All tracks were standardized using a state spacemodel, generating a dai-
ly regular position including uncertainty estimates to match availability
of remotely sensed environmental data (30).

Pseudo-absences (hereafter called absences) for tracking data were
generated by creating a set of 20 correlated random walks for each in-
dividual, which started at the tagging location and matched the total
duration of the tag (fig. S2). Each step was determined by sampling
a paired step length and turning angle from the distribution of ob-
served step lengths and turning angles from the corresponding track
[see the study of Hazen et al. (31)]. The correlated random walks thus
recreate movement characteristics that are similar to the original track
butmove independently of the underlying environment to sample space
available to, but not used by, focal individuals.We collated tracking data
and randomly selected absences into a master data set, combining loca-
tions received from all individuals sampled from each population. To
account for sampling bias and reduce spatial autocorrelation issues, pres-
ences and absences from tracking data were randomly and iteratively
sub-sampled 1000 times.

Presence and absence data sets were used to sample remotely sensed
environmental variables using date, location, and mean position error.
All environmental data fields were resampled to a common extent and
resolution (0.25° × 0.25° pixel size) that matched the coarsest resolution
product. Mean values were sampled at each location over a radius en-
compassing themean position error in tracking data (0.5°), and SDwas
calculated over a 1° × 1° window. Environmental data sets were ex-
tracted via Southwest Fisheries Science Center (SWFSC)/Environmental
Research Division’s ERDDAP, when available (32), including sea sur-
face temperature (SST) from Pathfinder and GHRSST (mean and SD),
zonal wind (y-wind) speed as a proxy for upwelling fromQuikscat and
Ascat (mean), and chlorophyll a (chl-a) fromSeaWiFS andMODISAqua
(mean). Additional variables were extracted from Aviso+ and CMEMS
(CopernicusMarine EnvironmentMonitoring Service) servers, including
sea surface height anomaly (SSHa; mean and SD), and eddy kinetic
energy (EKE) calculated from zonal and meridional current fields
(mean). Sea surface temperature SD, SSHa SD, and EKE provide metrics
of mesoscale activity at multiple scales. Lunar illumination, a proxy
for the amount of moonlight reaching the sea surface, was calculated
using the lunar package v.0.1-14 in R (v. 3.4.0), and bathymetry (mean
and SD; that is, bottomdepthandroughness)was acquired fromETOPO1.
Although our current product may not be considered high resolution
for all ocean uses, product resolution can be improved as new satellite
products come online or as new ocean-modeled products become op-
erationalized (20, 33).

We built and validated a suite of species distribution models using
boosted regression trees with a binomial (presence-absence) response
to quantify the probability of the presence of each of our focal species
Fig. 1. Mapof tracking and fisheries observer data relative to the PLCA. Fisheries
observer data are shown as kernel densities, from low (yellow) to high (red) effort.
The greatest fishing effort was spatially concentrated in the Southern California Bight.
The three tagged species are shown as points, with leatherback turtles migrating from
western Pacific breeding grounds to forage in the California Current, blue sharks mi-
gratingnorth-south in theCalifornia Current seasonally, andCalifornia sea lions remain-
ing within the study area for the duration of our analyses. Inset: Themajority of fishing
effort (80%) has taken place between August and December throughout the period of
the study, with a peak in October.
2 of 7

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on D
ecem

ber 6, 
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

as a function of combined environmental covariates (20, 34). Resultant
models then were used to predict relative habitat suitability for each of
the focal species at daily time steps (figs. S3 to S5). We examined the spa-
tiotemporal variability in daily predictions at 0.25° resolution over the
main period of operation of the fishery (August toDecember) in two con-
trasting years—2012, a year of typical oceanographic conditions in the
California Current, and 2015, an unusually warm year resulting from
a marine heatwave and the strong El Niño event of 2015–2016 (13).

To create an integrated multispecies predictive surface, we weighted
each layer by the relative management risk of the focal species before
averaging across layers. Species risk weightings were determined on
the basis of management concern, discussion with fishers and man-
agers, and fishery bycatch rates such that critically endangered leather-
back turtles were given values twice the weighting of blue sharks and
over 10 times that of sea lions. Prediction layers for each species were
combined into a single surface bymultiplying the layer by the species
weighting, summing the layers, and then normalizing the range of
values in the final predictive surface from −1 (low catch and high by-
catch) to 1 (high catch and lowbycatch).We assessed a suite of potential
species weightings based on management concern (fig. S6) to illustrate
how they influence the EcoCast predictions. Given that the weightings
are arithmetically determined, increasing bycatch risk for a species by a
factor of 2 would also increase risk in the integrated surface proportion-
ally, albeit with different spatial patterns.

Target catch maintenance was equally as important as bycatch
reduction in this management scenario. As such, pixels with low
integrated risk and low swordfish suitable habitat (<25%) were given
a 0 value to ensure that fishing effort was not directed to areas of
extremely low bycatch yet also low target catch. The top quartiles of
species-specific predictions were plotted in time to illustrate how they
changed throughout the season for a normal (2012) and anomalously
warm year (2015; fig. S5). In addition, the persistence of bycatch risk for
leatherback turtles within the study area was explored over the fishing
season (August through November) to examine the efficiency of dy-
namic closures compared to the 552,000 km2 static Pelagic Leather-
back Conservation Area (PLCA). Daily pixels with leatherback turtle
habitat suitability greater than 0.25 (top three quartiles) were
considered to be a conservative threshold for leatherback bycatch
risk. This value was chosen based on previous critical habitat thresh-
Hazen et al., Sci. Adv. 2018;4 : eaar3001 30 May 2018
old estimates of 0.75 for toppredators (12,35). Suitable-habitat pixels were
summed across the 2012 and 2015 fishing seasons independently
and divided by the total number of days, resulting in values of 0 to
100% persistence of turtle habitat per pixel. Hypothetical dynamic
closures were then compared to the spatial area covered by the Pe-
lagic Leatherback Conservation Area. The calculations for leather-
backs alone included more conservative habitat cutoffs (25%) than
that of the integrated multispecies time series (50%). This resulted in
smaller closed areas when considering multiple species compared to
the conservative approach used when protecting leatherbacks alone.
RESULTS
Species distribution models
We developed habitat suitability models for four focal species (broad-
bill swordfish, blue shark, California sea lion, and leatherback tur-
tle) over the California Current domain (Fig. 2). Bathymetry was
the most informative variable in predicting the presence of all spe-
cies, followed by sea surface temperature, SSHa, and chl-a concentra-
tion (Table 1). When examining the partial effect of a single variable
alone (sea surface temperature and bathymetry), all species except
sea lions showed overlapping habitat preferences, indicating that a
multiple covariate approach is required to tease apart spatial pat-
terns in habitat use (figs. S3 to S5). Our models had AUC (Area Under
Receiver Operating Curve) values of 0.72 to 0.93 using a 75% training
and 25% test data set but were lower when predicting upon specific
years (0.66 to 0.85; table S1). Suitable habitat for the target species,
swordfish, was more broadly distributed across the area of operation
of the fishery than for nontarget species, highlighting an ability to
occupy a broad ecological niche, resulting in multiple fishable regions
with low bycatch risk. For example, a suitable habitat for sea lions was
limited to coastal areas, while suitable habitat for the leatherback turtle
was more patchily distributed offshore. Predictions of habitat suitability
for blue sharks generated from models using fisheries-independent
(satellite tracking) and fisheries observer data were broadly similar, al-
though the observer-based model predictions showed a more dominant
influence of mesoscale variability, possibly as a result of increased
fishing effort and catchability at mesoscale features such as fronts
and eddies (Fig. 2 and figs. S3 and S4).
2018
Fig. 2. Habitat suitability predictions for individual species for 1 August 2012 that inform the EcoCast tool, from low (white) to high (blue). (A) Swordfish
(observer) were predicted to occupy the broadest portion of the California Current. (B) Leatherback turtles (tracking) were predicted to occupy waters offshore of the
upwelling front, yet avoiding newly upwelled waters. (C) California sea lions (tracking) occupied cool, nearshore waters with proximity to their haul-out sites. (D) Blue
sharks (tracking) were also broadly distributed and avoided the coolest upwelled waters nearshore. (E) Blue sharks (observer) were more closely tied to mesoscale
features, incorporating both species distribution and fisheries catchability.
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Integrated EcoCast models
Species-specific habitat suitability predictions were integrated to
generate a weighted daily predictive surface for all four species using
contemporaneous remotely-sensed data fields. In our case study, both
bycatch-only and multispecies-integrated predictions showed differing
spatial patterns between 2012 and 2015, a normal year and an anoma-
lously warm year, respectively (Fig. 3 and see Supplemental Methods).
In 2012, pixels with high bycatch risk were concentrated largely around
mesoscale structures outside of the upwelling domain (Fig. 3, A and C,
andmovie S1). In 2015, pixelswith high bycatch riskwere close to shore,
with less mesoscale influence offshore (Fig. 3, B and D). Both 2012 and
2015 had pixels with persistently high bycatch risk directly south of the
PLCAand anarrowband of pixels around 40°Nof low risk.Many of the
features visible in daily predictions were stable across days if not weeks
(movies S1 to S4). Our results suggest that interannual variability can be
as important as seasonal variability when designing dynamic manage-
ment approaches (Fig. 4).

EcoCast evaluation
Particular attention was given to one focal species, the leatherback tur-
tle, owing to its protected species status and influence on the design of
the existing time-area closure. We quantified persistence of leatherback
bycatch risk in each pixel by counting the number of days in which pre-
dicted habitat suitability was above a 25% threshold during the August
to December fishing season. The temporal patterns in bycatch risk for
leatherbacks were explored daily over the fishing season to examine the
efficiency of dynamic closures compared to the static PLCA. While the
PLCA includes a significant portion of leatherback habitat in the Cali-
fornia Current (Fig. 4, A and B), leatherback turtle habitat was more
variable in space and time in an average year (2012) compared to a
warm year (2015). We found that a dynamic closure would have re-
quired about half the area to achieve comparable bycatch risk reduction
Hazen et al., Sci. Adv. 2018;4 : eaar3001 30 May 2018
in August to September of 2012 and would have required only 11% of
the PLCA area near the end of November (Fig. 4, C and D). In compar-
ison, suitable habitat for leatherback turtles in 2015 was greater in area
and more persistent, with a dynamic closure of 33 to 43% of the PLCA
area needed to achieve similar levels of bycatch risk reduction. The same
calculation was performed with a 50% threshold for the integrated risk
product fromAugust to December, resulting in dynamic closures rang-
ing from 3 to 22% of the PLCA area in 2012 and from 13 to 28% in
2015. Overall, the PLCA is well placed for reducing leatherback turtle
bycatch; however, it also greatly reduces fishing opportunity compared
to dynamic closures.
DISCUSSION
Bycatch remains one of the most significant global barriers to fisheries
sustainability, despite a range of mitigation efforts implemented in in-
dividual fisheries (11, 16, 25). Innovation in effective fishery manage-
ment tools is urgently required to reduce the ecological impacts of
non-selective fisheries. Our data-driven, multispecies dynamic ocean
management approach provides a novel solution to reducing bycatch
while supporting sustained catch rates through coupling high-resolution
Earth Observation data with fisheries observer and fisheries-independent
data sets. Single-species dynamic ocean management approaches have
been applied elsewhere, such as the voluntary framework to reduce log-
gerhead turtle bycatch in the central North Pacific (36) and themanda-
tory framework that limits tuna fishing opportunities in the waters of
Eastern Australia when bycatch quota is not available (37). However,
this is the first example of amultispecies tool that can predict both catch
probability and bycatch risk in near real time.

Our analyses suggest that dynamic ocean management can support
effective bycatch reduction while maintaining fishing opportunity, there-
by allowing fisheries managers to meet dual objectives of ecological
and economic sustainability.Our findings suggest that, by tracking daily
oceanographic conditions, the California swordfish DGN fishery could
access currently closed fishing areas while still protecting leatherback
turtles. Previous findings have shown that the timing of the PLCA is well
placed to reduce bycatch (26). Our hindcast model predictions show that
the current static closure is well placed spatially, although at times overly
conservative.Whenprotecting the top 75%of predicted leatherback hab-
itat, dynamic closures were at most half of the size of the current PLCA.
When protecting the top 50%of high bycatch and low target catch areas
from integrated EcoCast risk products, dynamic closures were a quarter
of the size, highlighting the opportunity cost of the current seasonal clo-
sure. Variability in closure size was high during the fishing season, as the
proportion of predicted suitable habitat for leatherbacks within the ex-
isting protected area varied by16 and28%within 2012 and 2015, respec-
tively. The interannual variability between these 2 years was up to 41%,
suggesting that annual adjustments to closed areas could be an improve-
ment when daily adjustments are not feasible. Intra- and interannual
variability in dynamic closure size was muted when consideringmultiple
bycatch species. Holistically, the results provide evidence that an eco-
informatics approach that responds to ocean conditions at coarse tempo-
ral scales can be more effective than static boundaries in simultaneously
supporting fishing opportunities and reducing bycatch.

Moreover, using historical species distribution data to designate
static or seasonal closures puts these areas at the risk of losing ecological
relevance as species’ distributions shift with a changing climate (38).
Anomalous ocean conditions place stress on static management
approaches and are likely to become more frequent in the future (39),
Table 1. Variable weightings indicating the importance in final boosted
regression tree models for tracking and observer data. Bathymetry
and temperature were reliably the two most important predictors in
modeling habitat. Bold numbers highlight the three most important factors
for each model. NA, not applicable.
Observer
 Tracking
Swordfish

Blue
shark
Blue
shark
Leatherback

Sea
lion
Bottom depth
 32.9
 47.2
 15.6
 14.6
 49.1
SST mean
 18.0
 8.0
 49.3
 34.7
 14.3
SSHa
 10.3
 8.2
 4.7
 11.2
 5.4
Chl-a
 7.9
 2.7
 11.0
 8.9
 12.2
y-wind
 5.7
 3.7
 4.4
 6.1
 1.9
Lunar phase
 5.5
 3.5
 NA
 NA
 NA
Bottom roughness
 5.4
 5.5
 4.2
 11.4
 3.0
SST SD
 5.3
 6.7
 3.2
 5.1
 2.8
SSHa SD
 5.1
 10.2
 4.3
 NA
 6.0
EKE
 3.9
 4.4
 3.4
 6.1
 5.3
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Fig. 3. Predicted risk surfaces for bycatch species and integrated EcoCast product for 1 August 2012 and 2015. (see movies S1 to S4 for the entire season).
Bycatch-only model results for an (A) average year, 2012, in the California Current and (B) an anomalously warm year, 2015, for leatherback turtles, blue sharks, and
California sea lions. Integrated EcoCast model predictions for (C) 2012 and (D) 2015 incorporate swordfish in addition to the three aforementioned bycatch species.
Values range from −1 (low catch and high bycatch) to 1 (high catch and low bycatch). Risk weightings reflect management concern with leatherbacks and swordfish
having the highest, followed by blue sharks, and California sea lions having the lowest (see the Supplementary Materials for details and sensitivity analysis). Risk
weightings can be adjusted dependent on management priorities, such as when the fishing season progresses or priorities change.
Hazen et al., Sci. Adv. 2018;4 : eaar3001 30 May 2018 5 of 7
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highlighting the need for climate-ready fisheries management (40). Dy-
namic ocean management tools can be used to test the efficacy of ex-
isting closures under increasing climate variability or long-term change.
As the distributions and conservation status of populations of nontarget
species change, eco-informatics tools can adapt to varying conservation
and exploitation-based economic objectives. The implementation of ma-
rine spatial planning is both a sociopolitical and an ecological enterprise,
often requiring significant stakeholder engagement when balancing
across multiple conflicting needs (41). While static approaches require
a new implementation phase to adjust, dynamic ocean management ap-
proaches are designed to adjust management boundaries as new
information becomes available (42).

With the burgeoning growth of technological products and capacity,
there are greater opportunities for eco-informatics approaches to meet
challenging, and often conflicting, management mandates in both ma-
rine and terrestrial systems (43). Dynamic modeling approaches confer
opportunity to proactively address multiple management objectives
using hindcasts, real-time data, seasonal forecasts, and climate projec-
tions, when available (44). Management approaches that are based on
dynamic species-environment relationships offer a potential win-win
outcome for protected species and fisheries and provide climate-ready
solutions to respond to both ocean variability and directional change.
While nomodel is perfect, the iterative and adaptable design of dynamic
Hazen et al., Sci. Adv. 2018;4 : eaar3001 30 May 2018
oceanmanagement approaches can improve as new data become avail-
able and new analytical techniques are developed. The continued de-
velopment of eco-informatics and dynamic approaches will provide
an important pathway to support long-term economic sustainability
in concert with conservation of marine biodiversity.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaar3001/DC1
Supplementary Methods
table S1. Species-specific model deviance explained and cross-validation using area under the
curve statistics.
fig. S1. Kernel density plot of fisheries effort and tracking data for leatherback turtles, California
sea lions, and blue sharks.
fig. S2. Sample track with three randomly selected pseudotracks for all three satellite-tracked species.
fig. S3. Partial response curves from boosted regression trees for sea surface temperature,
bathymetry, chl-a, and SSHa across all species models.
fig. S4. Species-specific predictions with error bounds from boosted regression tree model
fitting process.
fig. S5. Time series of species habitat in a normal (2012) and anomalously warm (2015) year.
fig. S6. Sensitivity analysis of EcoCast bycatch and integrated risk under varying species
weightings to highlight their influence on the final product.
fig. S7. Operational tool for exploring EcoCast weightings available to managers to assess how
varying scenarios change the integrated risk surface.
movie S1. Animation of daily bycatch predictions for the August to December 2012 fishing
season, with red pixels representing high risk and white representing low risk.
movie S2. Animation of daily bycatch predictions for the August to December 2015 fishing
season, with red pixels representing high bycatch risk and white representing low risk.
movie S3. Animation of daily integrated predictions for the August to December 2012 fishing
season, with red pixels representing high bycatch risk and low target catch and with blue
pixels representing high target catch and low bycatch risk.
movie S4. Animation of daily integrated predictions for the August to December 2015 fishing
season, with red pixels representing high bycatch risk and low target catch and with blue
pixels representing high target catch and low bycatch risk.
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