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Abstract

Most competition studies between species are conducted from a population-level approach. Few studies have examined
inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our
knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus
galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied
their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to
examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow,
intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving
predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night
(63%), between 0–40 m, within fur seals’ diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur
seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur
seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving
strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and
foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving
density, is a foraging ‘‘hot spot’’ for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation
also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited
depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and
decreased productivity. Potential competition between these species could be greater during warmer periods when prey
availability is reduced.
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Introduction

Survival of a population is achieved through foraging success

and ultimately, reproductive success. These factors will influence

energy allocation to offspring and therefore, population growth.

Being successful at acquiring prey is determined by prey

abundance, accessibility, and species interactions, specifically

competition for prey resources. Ecological niche separation can

occur by organisms differing in their breeding chronology,

foraging behavior, foraging time, prey type, trophic position,

and life history strategies [1–6].

Inter-specific competition, defined as reciprocal negative effects

of one species on another (either directly or indirectly mediated by

changes in resource availability), is an important process

determining the structure of natural communities [7–10]. A

central tenet of Lotka–Volterra competition theory is that

coexistence of two species is possible when the per capita effects

of intra-specific competition on per capita rates of population

growth are greater than those of inter-specific competition [11,12].

A vast literature exists on inter- and intra-specific competition, but

fewer authors have examined inter-specific competition in

conjunction with intra-specific competition, e.g. [13–18].

Many methods have been applied to study marine top predator

competition such as ecological niche models, spatial distribution,

diving behavior, fatty acid analysis, stable isotopes and diet [19–

26] but most of them with a population based approach.

Considering intra-specific dynamics on a spatial and temporal

scale, when studying species interactions, allows the detection of

inter-specific interactions on a finer scale. To our knowledge, no

such studies have been done on marine top predators.

Closely related species with similar life-history strategies often

share similar niches. Non-migratory, central-place foraging species

with overlapping ranges may compete for similar resources, such

as prey. Among the sympatric marine mammal species with

similar life-history traits and foraging habits are the otariids: fur

seals and sea lions. In general, where fur seals and sea lions live in

sympatry, the fur seal population is typically larger and they

appear to outcompete sea lions [27].

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70748



In conditions of limited resources, competition between

species implies a reduction in some population attributes, such

as growth, survival or fecundity [28]. The observation that

most sea lion populations are smaller when sympatric with fur

seals suggests that some interspecific competition may occur.

While a number of studies have examined potential competi-

tion between sympatric fur seal and sea lions, their results are

mixed. Some have found ecological segregation with no trophic

overlap [29–32], while others have found some dietary overlap

[25,33]. Most of these studies examined niche overlap in the

diet of sympatric fur seals and sea lions, but few have examined

overlap in terms of the spatial (both horizontally and vertically

in the water column) and temporal components of foraging

behavior.

On the Galapagos Islands, the Galapagos fur seal (Arctocepha-

lus galapagoensis) and the Galapagos sea lion (Zalophus wollebaeki)

coexist on several islands. Both species are endangered, and

although the sea lions are more abundant (20,000–40,000

indiv.) than fur seals (10,000–15,000 indiv.) [34], the local fur

seal population is usually larger where they occur sympatrically.

Such is the case at Cabo Douglas, Fernandina Island, where the

fur seal population is larger than that of sea lions (fur seals:

215625 and sea lions: 42611 individuals, [32]). While these

species share similar life history strategies, sea lions breeding

season is longer than that of fur seals and female fur seals wean

their pups at an older age (2–3 yrs. old) than sea lions (1–2 yrs.

old). Provisioning strategies also differ, fur seals foraging trip

durations are usually longer and vary as a function of the lunar

cycle while sea lions exhibit shorter intervals between female

attendances. Therefore, time to weaning and number of feeding

trips during this interval are much reduced in sea lions

compared to fur seals [35].

Dellinger and Trillmich [29] studied the diet of Galapagos sea

lions and fur seals in scats and vomits. They found that fur seals

mostly fed on fishes of the Myctophidae and Bathylagidae

families, while sea lions most important food item was sardines

(Sardinops sagax), concluding that food-niche overlap between the

two species was almost non-existent. On average, fur seals are

known to dive shallower than sea lions, which holds true for

Galapagos otariids [36–38]. Other authors have studied

Galapagos sea lions and fur seals diving behavior and trophic

position (stable isotopes) [23,32], finding little to no overlap at

the population level. However, sea lions have been shown to

exhibit diverse foraging strategies, regarding their diving

behavior and space use (shallow, intermediate and deep divers)

within a population as a possible consequence of intra-specific

competition [38,39]. Acknowledging individual-level variation

can benefit ecological studies as it represents a more complete

description of a biological system. Individual specialization has

potentially profound implications for our understanding of

ecological and evolutionary processes and hence for conserva-

tion programs.

Here we examined potential foraging niche overlap in a

sympatric fur seal and sea lion species at Cabo Douglas, from

simultaneously collected foraging behavior data to determine

the occurrence of potential competition in the spatial and

temporal domain and to determine niche variability within each

species. We predicted that sea lions, when in sympatry with fur

seals, would exhibit similar foraging strategies to those

previously found in allopatry, and that there would be an

overlap between the foraging niche of shallow diving sea lions

and fur seals. Alternatively, sea lions could exhibit fewer

foraging strategies and the strategy most similar to fur seals

would be eliminated to reduce competition.

Methods

Ethics statement
All research reported here, animal handling and instrumenta-

tion is in compliance with animal care regulations and applicable

national laws of Ecuador, in which they were performed. This

research was approved by the CARC (Chancellor’s Animal

Research Committee) at University of California, Santa Cruz.

The appropriate animal use and care committee of Ecuador

(Parque Nacional Galapagos) approved all research protocols.

This work was performed under the permit No PC-11-08 and PC-

043-09 of the National Park service, Galapagos.

Field site and tagging procedures
Research was carried out during two seasons in 2009: March

and October-November at Cabo Douglas, Fernandina Island

(0.320u S, 91.670uW) in the Galapagos Islands. In March, 7 adult

lactating female Galapagos sea lions and 6 adult lactating

Galapagos fur seals were captured. In October, 10 lactating

female sea lions and 11 lactating female fur seals were captured.

Sea lions and fur seals were both captured with hoop nets and

manually restrained for instrument attachment. Lactating females

were chosen to facilitate tag recovery since they constantly return

to the colony to feed their pups. Furthermore, compared to other

sex/age classes, lactating females require greater energy intake

from a smaller foraging range given their timely constraint to

return to land and feed their offspring. Thus foraging niche

competition is potentially intensified in lactating females.

To determine movement patterns at sea and diving behavior,

animals were instrumented with GPS tags and time-depth

recorders (TDR), either a Mk10-AF (Wildlife Computers, USA)

or a Sirtrack GPS (Sirtrack, New Zealand) plus Mk9 (Wildlife

Computers, USA). TDRs were programmed to sample depth,

time, temperature and light level every two seconds. FastLoc GPS

were set to acquire a position every 15 min. The depth resolution

(accuracy) was 0.561% m for MK9/MK10 and mean GPS error

has been estimated to 36 m [40]. Animals were also instrumented

with radio transmitters (VHF) (Sirtrack, NZ) to aid in recovery on

land. Instruments were mounted on mesh netting and glued to the

dorsal pelage of the lower back and between the shoulders of the

animals using Araldite epoxy (Araldite 2012, Huntsmann

Advanced Materials, Basel, Switzerland). Sets of instruments

(TDR, GPS and VHF) weighed between 0.3 and 0.7% of the study

animals body mass. Animals were weighed in a sling using a tripod

and a 100 kg (+/20.2 kg precision) capacity digital scale (Kern

HUS 300K 100). All study animals, except 3 sea lions and one fur

seal, were recaptured after 8 to 14 days during March, and 8 to 19

days during October-November (except one fur seal: Ag5, after 51

days and one sea lion: Zw61, after 74 days). The equipment was

removed by physically restraining the animals. The remaining

pieces of epoxy mounts fall off within a few months during the

animals’ annual molt. All study animals were monitored in a

subsequent field season and showed no physical impact or

behavioral abnormalities as consequence of instrument deploy-

ment.

Tracking and diving behavior analyses
To determine the animals habitat utilization and foraging

range, GPS positions were decoded using the DAP processor

(Wildlife Computers) and a custom software package written in

Matlab (The MathWorks Inc, USA) (IKNOS toolbox) was used to

filter GPS location data. The algorithm uses several criteria to

remove unlikely locations: (1) realistic travel speeds of a subject

between two fixes (#6 km h21 f) (2) change in azimuth between
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successive fixes (angle tolerance 180u), (3) on land locations and (4)

time lapse between two consecutive fixes (10 min). Filtering

retained approximately 80% of GPS positions, as in Jeglinski et

al. [41]. Spatial analyses were performed using ArcGIS v10.0.

Dive data were analyzed in Matlab using a dive analysis

program (IKNOS, Tremblay, unpublished), which allows for a zero-

offset correction at the surface and the identification of dives based

on a minimum depth and duration. During both seasons, all Mk9

and Mk10-AF recorders had a 0.5 m depth resolution and all but

one recorder sampled every 2 sec (during March, a sea lion

recorder: Zw33, sampled every 10 sec). The minimum depth

considered to be a dive was 5 m and the minimum duration was

12 sec (10 sec for Zw33), equivalent to at least 6 depth

measurements. The maximum difference considered for the

length duration of tag deployments between individuals was 11

days. Only the portion of the tracking and diving behavior data for

animals Ag5 and Zw61 (longest records) were used that

corresponded with the same time period of the other animals.

Statistical analyses
All statistical analyses were performed in SYSTAT 11. For all

analyses, data were tested for normality using a Kolmogorov-

Smirnov test and log transformed when needed. Significance level

was set at P#0.05.

Effect of Season on Diving Behavior. In order to increase

our sample size to examine diving strategies, we analyzed data

from both seasons together. We evaluated the effect of season on

the diving behavior of each species, given that during the October

season both fur seals and sea lions were breeding and rearing

younger pups [42,43] compared to the March season (Sea lions:

n = 5 & 9; Fur seals n = 6 & 10 in March and October

respectively).We performed a Principal Component Analysis

(PCA) to reduce the number of variables followed by a General

Linear Model (GLM) to test for the effect of season on each

species. A multivariate analysis is suitable for this type of data

because the diving variables are strongly correlated. Because

diving variables are interdependent the use of PCA allowed us to

reduce the number of original variables (17) into fewer principal

components, simplifying GLM analysis.

Variables used for the PCA were mean values of the following

parameters for each dive: maximum dive depth (m) and its

standard deviation (SD), dive duration (sec) and SD, bottom time

(sec) and SD, number of ‘‘wiggles’’ at the bottom of a dive (number

of ascent and descent movements at the bottom of the dive, which

imply foraging behavior) [44] and SD, descent, ascent rate (m s21)

and their SD, dive rate (dives hr21), efficiency (bottom time/

duration of the total dive cycle (dive duration+surface interval))

and SD. The SD of dive rate was not included as its distribution

did not achieve normality after several transformations. Addition-

ally, we used percent time diving and intra-depth zone index (%

IDZ). IDZ provides an index of the tendency to repeatedly dive to

a given depth [45], evidence of benthic diving. Considering 5 m

was the minimum detectable depth for a dive, a user defined zone

of 610 m of the maximum depth of the previous dive was applied

(i.e. 5 m above and below the previous depth) to calculate IDZ.

Principal components obtained from the PCA were then used as

variables in the GLM.

The PCA analysis on fur seals diving variables showed that 3

principal components (PC) explained 78.2% of the variance. The

different PCs were driven by the following variables: PC1 (40.4%

of the variance): dive depth, dive duration, bottom time, bottom

wiggles, SD of bottom wiggles, efficiency and SD efficiency; PC2

(21.6% of variance): SD dive duration, descent rate, ascent rate

and IDZ and PC3 (16.1% of variance): SD ascent rate, dive rate,

Table 1. Galapagos sea lions and Galapagos fur seals Principal Component (PC) loadings.

Galapagos fur seals Galapagos sea lions

Diving variable PC1 PC2 PC3 PC1 PC2 PC3

(40.45%) (21.6%) (16.13%) (65.11%) (13.07%) (8.38%)

Dive depth 0.813 20.163 0.232 0.924 20.069 0.189

SD Dive depth 0.31 0.482 0.448 0.775 20.541 0.181

Dive duration 0.926 0.222 0.18 0.939 0.099 0.106

SD Dive duration 0.344 0.777 0.291 0.865 20.411 20.079

Bottom time 0.976 0.03 0.055 0.831 0.483 0.093

SD Bottom time 0.652 0.541 20.035 0.842 0.199 20.224

Bottom wiggles 0.934 20.206 20.081 0.808 0.483 0.066

SD Bottom wiggles 0.797 0.15 20.129 0.863 0.273 20.002

Descent rate 20.114 20.931 20.216 0.894 0.235 0.152

SD Descent rate 20.212 0.081 20.697 0.785 20.413 20.248

Ascent rate 0.471 20.732 20.232 0.837 0.228 0.326

SD Ascent rate 20.026 0.056 20.73 0.823 20.293 20.094

Dive rate 20.403 20.484 0.646 20.958 0.218 20.135

Efficiency 0.882 20.414 0.082 20.656 0.633 0.251

SD Efficiency 0.784 0.072 20.465 20.52 20.012 0.716

IDZ 0.649 20.688 0.104 0.863 0.278 0.121

% time diving 20.058 20.325 0.757 0.176 0.524 20.682

PC loadings from Principal Component Analysis of diving variables and their standard deviation (SD) (Mar. & Oct. 2009), Cabo Douglas, Fernandina Island. Percentages
given are the percentage of variance explained by each component.
doi:10.1371/journal.pone.0070748.t001
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% time diving and SD descent rate. The GLM performed with the

above PC’s as variables to test for a seasonal effect revealed that

PC1 and PC3 were not significantly different between seasons and

PC2 was significantly different between seasons (P = 0.03)

(Table 1).

The PCA analysis on sea lions diving variables showed that 3

PCs explained 86.6% of the variance. The different PCs were

driven by the following variables: PC1 (65.1% of the variance):

dive depth, SD dive depth, dive duration, SD dive duration,

bottom time, SD bottom time, bottom wiggles, SD bottom wiggles,

descent rate, SD descent rate, ascent rate, SD ascent rate, dive rate

and IDZ; PC2 (13.1% of variance): efficiency and PC3 (8.4% of

variance): SD efficiency and % time diving. The GLM performed

with the above PC as variables to test for a seasonal effect revealed

that PC1 and PC2 were not significantly different between seasons

and PC3 was significantly different between seasons (P = 0.03)

(Table 1).

The variables that were affected by season in either fur seals or

sea lions diving behavior were removed from further analyses.

These variables were: SD dive duration, descent rate, ascent rate,

IDZ, SD efficiency and % time diving. The SDs of descent and

ascent rate were also removed.

Diving Behavior – Foraging strategies. Hierarchical clus-

ter analyses (HCA) were conducted, one for each species

separately and one with both species together, to classify diving

behavior as in Villegas-Amtmann et al. [38]. The HCA was

conducted using Euclidean distance and average linking method.

Variables used for the sea lions HCA were the female’s mean dive

parameter values: maximum dive depth (m) and its SD, dive

duration (sec), bottom time (sec) and SD, bottom wiggles and SD,

dive rate (dives hr21) and SD and efficiency (bottom time/

duration of total dive cycle (dive duration+surface interval)). To

further explore the existence of diverse foraging strategies, an

equality of variance test was conducted between sea lions and fur

seals. Greater variance would imply greater individual variability

and niche width [46] and would support the existence of diverse

foraging strategies. The test was performed for every diving

variable mentioned above.

To compare the overall diving behavior between species, an

ANOVA was performed on the means of the following diving

variables: dive depth (m), dive duration (sec), bottom time (sec),

number of bottom wiggles, dive rate (dives/hr) and efficiency.

Assessing niche overlap - night diving depth frequency

distributions. To assess overlap or segregation between spe-

cies, dive depth cumulative frequency histograms (5 m bin

intervals) were plotted for night dives only (because fur seals

predominantly dive at night [42]. Histograms were plotted for all

fur seals and sea lions together and separately for each sea lion

diving strategy found in the HCA. Based on the cumulative

percentage, the percentage of night dive depths that overlapped

between fur seals and each sea lion diving strategy was

determined. To evaluate differences in night dive depth frequency

distributions between species, two chi-squared tests were per-

formed comparing frequencies between 0–40 m (where most of

the overlap occurs) and 50–110 m (where the rest of the overlap

occurs). Additionally, the percentage of dives that occurred at

night was calculated for all fur seals, sea lions and each sea lion

diving strategy.

Assessing niche overlap - time of night dives. To further

examine the potential competition between species, the frequency

and percentage of dives that were occurring at the different night

hours were calculated. The mean dive depth of the dives that

occurred at the most frequented night hours was also calculated

(only dives between 0–130 m -where species overlap occurred-

were considered). Furthermore, we calculated the percentage of

night dives that occurred at the different night hours between 0–

30 m for fur seals vs. sea lion shallow diving strategy, and 0–40 m

for fur seals vs. sea lion intermediate and deep diving strategies

(where the greatest overlap occurred between fur seals and the

different sea lion strategies). Finally, the percentage of dives (from

all dives, day and night) that occurred at the overlapping night

hours for fur seals and every sea lion diving strategy group were

calculated.

Dive depth maximum efficiency. Dive depth maximum

efficiency was calculated by splitting the diving depths of each

species into 10 m bins (depth range). Mean dive depth maximum

efficiency (bottom time/duration of the total dive cycle (dive

duration+surface interval)) was then calculated for those depths

and plotted against depth range. Dive depth maximum efficiency

analysis was performed on all dives (day and night) for all animals.

Prior to the dive depth efficiency calculation, surface intervals were

filtered to eliminate values that included the interval after a

foraging bout and the haul-out period (extremely long surface

intervals). Surface interval histograms were plotted using cumu-

lative percentages. All surface intervals after the cumulative

percentage line had reached an asymptote were eliminated (all

surface intervals $2.85 min for fur seals and $22 min for sea

lions). Elimination of surface intervals was further corroborated by

the existence of a positive linear trend between dive duration and

surface interval.

Spatial analyses. To investigate the spatial segregation or

overlap of foraging activity between the two species, we identified

the position of each dive based on a linear interpolation of the

processed tracking data and utilized geo-referenced foraging

locations, following Jeglinski et al. [41]. In order to do that, trips

to sea (here defined as exceeding 45 min wet time) were

determined based on wet/dry sensor data of TDRs using a

custom written MatLab function. GPS data were split in separate

trips, assigning the closest on land GPS position in time to the start

and end of each trip. GPS tracks were interpolated using a hermite

spline (Tremblay et al. 2006; Kuhn et al. 2010). A land avoidance

algorithm was applied to interpolated tracks to adjust positions

that were on land to nearby water positions. Each dive was

associated with a GPS location using a time based linear

interpolation between track points. For subsequent analyses data

were converted into the Universal Transverse Mercator (UTM)

coordinate system. A kernel density analysis using a 5 km

bandwidth (ArcGIS v10.0) was run using the dive locations of

each species to identify regions of concentrated dive effort

(presumed foraging activity). The 95% volume contour was then

calculated to estimate the foraging range of each species. To

identify the potential region of overlap between the two species,

the intersection (overlap) between the two species was calculated.

This procedure was also repeated for each sea lion diving strategy

separately. Foraging range was calculated for all dives (day and

night) and for night dives separately.

Results

Diving behavior – foraging strategies. The HCA of sea

lion diving variables produced 4 groups which, essentially differed

in depth use. Sea lion groups were classified as: Shallow,

intermediate and deep divers. A fourth group with only one

animal (Zw57) that dived exceptionally deep was considered an

outlier and therefore removed from further analysis. Shallow

divers (Zw33, Zw51 & Zw59) exhibited the shallowest dive depth

(mean: 19.763.6 m), shortest dive duration (1.860.2 min),

greatest dive rate (18.760.6 dives/h) and greatest dive efficiency

Foraging Niche Overlap between Galapagos Pinnipeds
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(0.39). Intermediate divers (Zw38, Zw48, Zw56 & Zw58)

presented intermediate dive depth (53.9613.9 m), dive duration

(2.560.4 min) and dive rate (13.260.5 dives/h). Deep divers

(Zw40, Zw55, Zw60, Zw61, Zw63 & Zw64) showed the deepest

dive depth (103.0618.3 m), longest dive duration (3.660.8 min)

and lowest dive rate (8.761.1 dives/h). The Euclidean distance

considered for the group classification was 17–19 based on the

cluster tree produced from the analysis and the diving variables

similarities (Table 2 & Fig. 1).

Sea lions from all groups exhibited day and night diving with

63.1% of dives occurring at night. Shallow divers exhibited 55.6%,

intermediate divers 54.9% and deep divers 80.3% of their dives

during the night (Fig. 2).

The HCA of fur seals diving variables showed that all animals

clustered together at a Euclidean distance of 4.8. Comparing this

to the grouping Euclidean distance of sea lions, fur seals exhibited

only one diving strategy (Table 2 & Fig. 1). As expected, almost all

of the fur seal dives were performed during the night (95.6%;

Fig. 2).

The HCA of the diving variables of both species together

produced four groups: At the same Euclidean distance as

considered for sea lions HCA (17–19), all fur seals and sea lion

Shallow divers clustered together, whereas sea lion Intermediate

divers, sea lion Deep divers and Zw57 (sea lion outlier) formed

separate groups. The existence of diverse foraging strategies in sea

lions compared to fur seals was further supported by the ‘‘equality

of variance test’’ results (performed on all animals). The variance

of all diving variables were greater for sea lions than fur seals and

all variables except dive rate and efficiency were significantly

different between species (P,0.001 for dive depth, SD dive depth,

dive duration and SD bottom wiggles; P = 0.05 for bottom time;

P = 0.003 for SD bottom time and P = 0.001 for bottom wiggles)

(Table 2). Additionally, the coefficient of variance (CV) of the

three sea lion foraging strategies was significantly smaller (shallow:

18.1%, intermediate: 25.8% and deep 17.7%) than the CV of all

sea lions pooled together (65.5%), further supporting the existence

of diverse foraging strategies in sea lions.

The ANOVA performed on the diving variables between

species showed that dive depth (F-ratio = 13.22, N = 30,

P = 0.001), dive duration (F-ratio = 20.76, N = 30, P,0.0001),

bottom time (F-ratio = 13.97, N = 30, P = 0.001) and number of

bottom wiggles (F-ratio = 8.65, N = 30, P = 0.006) were signifi-

cantly greater in sea lions than fur seals. Dive rate and efficiency

were not significantly different between species.

Assessing niche overlap
Night diving depth frequency distributions. 84.7% of sea

lion night dives overlapped with fur seals diving depth range,

shown in their dive depth frequency histograms. Given that there

was greater variability and 3 foraging strategies (shallow,

intermediate & deep divers) in the sea lions diving behavior

compared to fur seals, competition between these species was

evaluated considering all the fur seals and each sea lion foraging

strategy separately. Sea lion shallow divers nocturnal depth range

(55.6% of total number of dives) overlapped completely with fur

seals diving depth range: 0–120 m, whereas 96.3% of sea lion

intermediate divers (52.9% of total dives) and 72.4% of sea lion

deep divers (58.1% of total dives) nocturnal depth range

overlapped with that of fur seals.

All three groups of sea lions night-time dive depth frequency

histograms exhibited a peak between 0–30 m, beyond which little

diving occurred. The fur seals dive depth frequency histogram

exhibited two peaks, a larger one between 0–30 m (46.8% of their

dives occur in this range) and the second one in the range of 40–
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80 m (where 51.8% of their dives occur). Histograms show that

most diving depth overlap between fur seals and sea lions occurred

in the range of 0–40 m (Fig. 3). Consequently, in the first 40 m of

the water column, where most of the dive depths overlap, 61.8%

of fur seal dives occurred, 97% of sea lion shallow divers dives,

85.3% of sea lion intermediate divers dives and 61.8% of sea lion

deep divers dives.

Chi-squared tests on dive depth distributions showed that for

both depth zones (0–40 m and 50–110 m), distributions were

significantly different between fur seals and each sea lion diving

strategy (P,0.0001 for all tests).

Time of night dives. Sea lions exhibited the greatest

proportion of their dives just after 18:00 (after sunset) (intermediate

and deep divers) and just before 05:00 (before sunrise) while fur

seals were least active during those hours. Mean dive depths

(0–130 m where overlap occurs) of sea lions were closest to fur

seals mean dive depths at 19:00 (sea lion intermediate and deep

divers) and at 5:00 (sea lion deep divers) (Figs. 2 and 4).

The greatest overlap in the time of day when most dives

occurred between fur seals (19% of total dives) and sea lion shallow

divers (10% of total dives) occurred at 22:00 and 21:00 (Table 3).

Most sea lion shallow strategy dives (96%) at these hours occurred

between 0–30 m depths where 64% of fur seal dives occurred.

However, it is important to consider that sea lion shallow divers

exhibited the greatest percentage of night dives at 5:00 (6% of total

dives) when fur seal diving activity is very limited (2% of total

dives).

Overlap in the timing of dives between fur seals (20% of total

dives) and sea lion intermediate divers (9% of total dives) occurred

at 21:00 and 19:00 (Table 3). These dives occurred within 0–40 m,

Figure 1. Galapagos sea lions and Galapagos fur seals diving variables cluster trees. Galapagos sea lions (Zw) and Galapagos fur seals (Ag)
cluster trees of diving variables from Hierarchical Cluster Analysis (Mar. & Oct. 2009) at Cabo Douglas, Fernandina Island. A. Sea lions, B. Fur seals and
C. Sea lions and fur seals together. Line indicates the Euclidean distance chosen to define groups.
doi:10.1371/journal.pone.0070748.g001
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the depth range of 93% of sea lion intermediate divers and 73%

of fur seal night dives. Similarly to sea lion shallow strategy,

most night dives for this sea lion group (which are 55% of total

dives) occurred at 18:00 and 5:00 (12% of total dives), the two

night hours with the least diving activity in fur seals (6% of total

dives).

Overlap between fur seals (31% of total dives) and sea lion deep

divers (19% of total dives) occurred at 19:00, 20:00 and 21:00

(Table 3). These dives also occurred within 0–40 m depth, the

depth range of 69% of sea lion deep divers and 72% of fur seal

night dives. In contrast to the other sea lion groups, 19:00 is when

most dives occurred for both species (7% of total sea lion deep

strategy dives and 10% of fur seal total dives) and when their mean

dive depths are closer (Fig. 4). Sea lion deep divers also exhibited a

large percentage of dives at 18:00 and 5:00 (13% of total dives) in

contrast with fur seals.

The percentage of dives from all dives (day and night) that occur

at these overlapping depths and times between species, are, for fur

seals at 19:00, 10.4%; 20:00, 10.5%; 21:00, 9.9% and 22:00,

9.4%. The percentage of dives from all dives for sea lion shallow

divers was, at 21:00, 4.7% and 22:00, 5.2%; for sea lion

intermediate divers, at 21:00, 4.4% and for sea lion deep divers,

at 19:00, 7.3%, 20:00, 5.9% and 21:00, 6.3%.

Dive depth maximum efficiency
Compared to sea lions, fur seals exhibited a narrower range of

dive depths where the diving efficiency was maximized. Fur seals

exhibited one dive depth peak of maximum efficiency within the

Figure 2. Galapagos fur seals and Galapagos sea lions frequency of mean dive depths. Galapagos fur seals (A) and Galapagos sea lions
diving strategies (B–D) frequency of mean dive depths during day and night (Mar. & Oct. 2009) at Cabo Douglas, Fernandina Island. Black bar shows
day hours.
doi:10.1371/journal.pone.0070748.g002
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range of 30–40 m. Sea lions exhibited two peaks, one between 10–

20 m and the second one at 80–120 m. When looking at sea lion

diving strategies separately, shallow divers presented two peaks of

maximum efficiency at 10–20 m and 90–120 m. Intermediate

divers presented two peaks: at 10–20 m and 110–120 m and deep

divers one peak at 100–130 m (Fig. 5).

Spatial analyses
The foraging range (95% volume contour kernel analysis) of fur

seals was 5999 km2, 7 times greater than that of sea lions, 840 km2

(Table 4 & Fig. 6). Among the different sea lion groups, the

foraging range was greater for sea lion deep divers (951 km2),

followed by intermediate divers (645 km2) and shallow divers

(320 km2) (Table 4). Fur seals foraged coastally and offshore to the

north, northwest, west and southwest of Fernandina Island with

the greatest concentration of diving locations to the northwest of

the island. Sea lion deep and intermediate divers foraged coastally

and offshore to the north, south and southeast of Fernandina

Island, while sea lion shallow divers only foraged coastally to the

north, west and south of Fernandina Island. Sea lions also

exhibited the greatest density of dives north of the island. The

percentage of foraging range overlap between fur seals and all sea

lions as well as fur seals and each sea lion diving strategy was

almost identical when considering all dives (day and night) or night

dives alone. A greater percentage of sea lion’s foraging range

overlapped with that of fur seals, for all 3 sea lion groups (20.70–

37.67%), than fur seals foraging range (2.93–5.33%) with each of

sea lions diving groups. This overlap was greater between fur seals

and sea lion deep divers, 5.33% of fur seals night foraging range

overlapped with sea lion deep divers range and 37.67% of sea lion

deep divers foraging range overlapped with that of fur seals

(Table 4 & Fig. 7).

Discussion

Diving behavior – foraging strategies
Sea lions exhibited greater individual variability in their diving

behavior compared to fur seals. Within the archipelago, more

central to their distribution, adult female sea lions exhibited 3

foraging strategies, suggesting intra-specific competition [38,39].

In this study where sea lions are at their western distribution they

also exhibited 3 distinct foraging strategies. In contrast, fur seals

exhibited a rather uniform diving behavior with only one foraging

strategy. This suggests greater intra-specific competition may be a

common feature in the foraging behavior of sea lions. In contrast,

the single foraging pattern of fur seals suggests that prey may be

quite abundant in the deep scattering layer of this area. Intra-

specific competition could be related to sex or age. However,

because our study included only adult females, we were unable to

test these parameters.

Sea lions dove deeper, longer, spent more time at the bottom of

their dives and greater number of bottom wiggles than fur seals, as

expected from previous work [36,43]. Sea lions are significantly

larger than fur seals and larger animals have proportionately

greater oxygen stores and therefore, greater breath-hold capacity

[47–49].

Figure 3. Galapagos sea lions and Galapagos fur seals dive depth histograms. Galapagos sea lions and Galapagos fur seals dive depth
histograms (Mar. & Oct. 2009) at Cabo Douglas, Fernandina Island. The different sea lion diving strategies are shown separately (A, B & C, grey
columns) in comparison to fur seals (black columns in A–C). (D) The 3 strategies together with fur seals.
doi:10.1371/journal.pone.0070748.g003

Foraging Niche Overlap between Galapagos Pinnipeds

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e70748



The west coast of the archipelago, where this study was carried

out, is the most productive area of the Galapagos archipelago

[50,51]. The fur seal and sea lion rookeries are located within the

upwelling region of the cold Cromwell countercurrent. Although

in a productive area, sea lions exhibited greater foraging effort as

shown by the greater percentage of time spent diving compared to

fur seals, possibly due to reduced prey availability or different prey

distribution. This suggests that food resources might be limited or

less accessible for sea lions here in the west as well as for their

central distribution in the Galapagos archipelago [38,39]. Sea

lions in the western part of the archipelago are known to feed on

deep water pelagic and demersal fish such as sardines (Sardinops

sagax), jack mackerel (Trachurus symmetricus) and Chlorophtalmus sp.

[23,29]. In contrast, fur seals feed on shallower waters, on prey

from the deep scattering layer when they migrate to the surface

during night, e.g. myctophids, bathylagids and cephalopods

[23,29,52]. Furthermore, sea lions are known to forage over the

shelf [32,38]. In the western region of the Galapagos archipelago

the shelf habitat is very limited, the only regions where benthic

habitat is accessible to sea lions are close to the coast of

Fernandina and in the Bolivar channel between Fernandina and

Isabela islands.

Costa & Gales [53] postulated that increased foraging effort

may explain why many pinnipeds and penguins that feed

benthically have small stable or declining populations, while the

many epipelagic divers have large stable and or increasing

populations. This appears to hold true at Fernandina Island,

where the fur seal population is significantly larger than the sea

lion population.

Assessing niche overlap
Night diving depth frequency distributions. Fur seals and

sea lion shallow divers exhibited similar diving behavior as they

clustered together in the HCA, 100% of their night dives

overlapped and 50% of the sea lion shallow strategy dives

occurred at night; therefore, they could potentially compete. In

addition, because 80% of the sea lion deep strategy dives occurred

at night, and they exhibit shallow and deep dives, this sea lion

group foraging niche could also potentially overlap with fur seals.

Sea lion deep divers might exhibit shallow and deep dives to

potentially avoid competition with other sea lion strategies and

because benthic fish, being generally bigger, will be energetically

richer than smaller pelagic fish [54].

Overlapping dive depths at night between fur seals and sea lions

occurred in the first 40 m of the water column, suggesting that

both species could be pursuing vertically migrating prey. Most of

the sea lion night dives occurred within the range of 0–40 m. Fur

seal night dives exhibited a bimodal distribution with a great

proportion of dives within the 0–30 m range (overlapping with sea

lions) and a second portion at 40–80 m depth, where almost no sea

lion night dives occur. Fur seals diving behavior is influenced by

the lunar cycle, increasing in depth according to lunar light

intensity [55]. Although overall sea lions dive deeper (day and

night) than fur seals, most of their night dives were shallower and

occurred within the foraging depth range of fur seals (0–30 m).

While the depth range between 40–80 m depth at night is almost

exclusively exploited by fur seals, a small proportion of sea lion

intermediate and deep strategy dives occurred at deeper depths

not used by fur seals.

Time of night dives. Trillmich [42] stated that niche

separation between the sympatric Galapagos fur seal and sea lion

was more extensive than different habitat choice on land. While

fur seals fed mostly at night and at shallow depths, sea lions did

most of their feeding during the day. Consistent with Jeglinski et al.

[41], we found that Galapagos sea lions also dive at night,

potentially overlapping with the foraging niche of fur seals. Here,

we extended the scope of previous studies by investigating niche

overlap between differing foraging groups within sea lions

compared to fur seals:

Sea lions exhibited the greatest percentage of their night dives

around 5:00 and 18:00 (22% of total night dives) just before

sunrise and after sunset; interestingly these hours were when fur

seals dove the least. This is expected, as fur seals not being

physiologically capable of diving to greater depths, they wait until

the deep scattering layer moves closer to the surface. Fur seals

exhibited the greatest percentage of night dives between 19:00–

22:00 (42%). Nonetheless, there is some overlap between fur seals

and sea lions, as a percentage of sea lion dives (18.5%) also

occurred at 19:00 and 21:00.

Figure 4. Galapagos sea lion and Galapagos fur seal percent-
age and mean depth of overlapping night dives. Percentage of
dives (A) and mean dive depth of dives (B) for three Galapagos sea lion
diving strategies and Galapagos fur seals covering the range of fur seals
dive depth (0–130 m) during night time (Mar. & Oct. 2009) at Cabo
Douglas, Fernandina Island.
doi:10.1371/journal.pone.0070748.g004
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Sea lion shallow divers and fur seal dives overlapped at 21:00

and 22:00, between 0–30 m depths. Sea lion intermediate divers

and fur seal dives overlapped at 19:00 and 21:00. These dives

occurred within 0–40 m. Correspondingly, sea lion deep divers

and fur seal dives overlapped at 19:00, 20:00 and 21:00. These

dives also occurred within 0–40 m depth. This sea lion group

exhibited the greatest percentage of night dives (80.3%) compared

to the other sea lion groups. Therefore, contrary to what we

hypothesized, the deep divers group, albeit of presenting the

deepest dives from all sea lion diving strategies, they also

performed a great percentage of shallower dives within fur seals

diving range. This sea lion strategy exhibited the greatest

percentage of night dives and overlap in depth and night time

with fur seals. It is possible that fur seals and sea lion deep divers

are hunting for similar prey such as myctophids and cephalopods

at these shallower depths. Myctophids and cephalopods are main

prey items in the diet of Galapagos fur seals [23,29] and although

they have not been identified in the diet of Galapagos sea lions at

their western distribution (where they coexist with fur seals), they

are part of their diet in their central, southern and eastern

distribution [56,57].

At 21:00 all three groups of sea lions and fur seals are diving

within the same depth range (0–30 m), and at 19:00 their mean

dive depths within this range are closest. However, fur seals are

exploring depths beyond 30 m, rarely explored by sea lions.

Therefore, potential foraging niche overlap between fur seals and

all three sea lion groups is occurring between 0–30 m depths at

19:00 and 21:00.

Although mean dive depths of all sea lion diving groups and fur

seals are closest at 19:00, dive depth maximum efficiencies differed

between species. Therefore, these coinciding dive depths in time

are outside the depth range of their respective maximum

efficiency.

Additionally, the fur seals diving behavior is influenced by the

lunar cycle, increasing in depth according to lunar light intensity

[55]. Sea lions are not known to be influenced by the lunar cycle.

We did not consider the lunar cycle in our analysis. Furthermore,

our diving data is not continuous as it comes from two separate

seasons and the deployment time of each individual within each

season was not long enough to follow a complete lunar cycle.

Nevertheless, because fur seals exhibited a great portion of their

night dives at deeper depths than sea lions, this depth range from

40–80 m (that is almost exclusively being frequented by fur seals)

might disappear or become shallower if lunar cycle is considered.

Therefore foraging niche overlap between sea lions and fur seals

might be accentuated around and during the new moon phase.

Spatial niche overlap
Overall, there is a spatial niche separation between species as

fur seals foraging range is significantly larger than that of sea lions,

partly explained by differences in their provisioning strategies as

fur seals foraging trip durations are longer than those of sea lions

(Villegas-Amtmann, unpubl.) [35]. However, fur seal area of

highest diving density (north of the rookery – Cabo Douglas) is

small and most of it is located within the sea lion area of highest

diving density. Fur seal mean dive depth within this area is

21.5620.0 m compared to 35.8620.5 m outside the highest

diving density area. Although mean dive depth inside the

overlapping area is shallower than outside this area, it is still

noticeably deep to be considered foraging dives. This demon-

strates that the coastal area just north of Cabo Douglas is a

foraging ‘‘hot spot’’ for both species where competition might

occur.

Foraging range overlap was greater between fur seals and sea

lion deep divers, coinciding with the greatest overlap in diving

depth and dive hours. Differing with what we hypothesized, the

sea lion deep diving strategy exhibited the greatest temporal and

spatial niche overlap with fur seals.

By studying ecological interactions with an individual-based

approach, we were able to detect foraging niche overlap on a finer

scale that was previously overlooked. Individual specialization

should be incorporated into models of food webs, competition, and

predator-prey and host-parasite interactions [58].

Future implications
Niche breadth is increased with increased environmental

uncertainty and with decreased productivity [5]. The year when

our study was carried out (2009) was considered a normal year

Table 3. Galapagos sea lions and Galapagos fur seals % of night dives by night hour.

Fur seals Sea lion Shallow divers Fur seals Sea lion Intermediate divers Sea lion Deep divers

% night dives 0–30 m % night dives 0–40 m

18 59.4 83.4 69 75.4 62.7

19 69.9 93.9 81.5 86 72.7

20 53.4 95.1 71 93.3 64.7

21 46.9 96.1 63.2 98.9 67.4

22 51.4 96.5 65.6 94.8 65.3

23 40.3 91.5 58.7 92.7 61.9

24 36.8 93.7 54.1 88.6 52.9

1 35.2 90.1 49.4 84.3 62.5

2 37.8 89.2 53 86.3 52.2

3 35.2 86.4 52.8 84.2 66.2

4 41.1 89.6 53.6 83.7 63.3

5 57.2 89.8 67.3 75.6 50

Dives between 0–30 m and 0–40 m, where overlap occurs. Mar. & Oct. 2009 at Cabo Douglas, Fernandina Island. In bold are the hours where the greatest % of night
dives occur.
doi:10.1371/journal.pone.0070748.t003
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with respect to El Niño oceanographic conditions, and took place

after a moderate La Niña year. We found a small overlap in fur

seals and sea lions diving niche as a result of temporal and spatial

segregation, but foraging at different times and locations does not

necessarily reduce foraging niche overlap unless these species are

consuming different prey. Wolf et al. [59], Paez-Rosas et al.[23]

and Jeglinski et al. [41] found trophic segregation between sea

lions and fur seals at Fernandina Island based on their C and N

isotopic signatures and potential trophic overlap during a

moderate El Niño year. Therefore, the potential for foraging

Figure 5. Galapagos sea lions and Galapagos fur seals dive depth maximum efficiencies. Galapagos sea lions diving strategies (B–D) and
Galapagos fur seals (A) mean dive depth maximum efficiencies (Mar. & Oct. 2009) at Cabo Douglas, Fernandina Island.
doi:10.1371/journal.pone.0070748.g005
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niche overlap between fur seals and sea lions is possibly greater

during warmer periods when prey availability is lower, consistent

with previous findings [29,30]. Therefore, if oceans continue on a

warming trend, the continuation of conservation programs for

these species becomes crucial.

An additional possible response to climate change could be

altered body size. Body size directly affects energy and water

requirements for thermoregulation [60], energy, mass acquisition

and utilization rates [61] and life-history characteristics [62].

Body-size declines are the universal response to climate change

suggested by some authors [63]. Fur seals from Fernandina Island,

significantly smaller than sympatric sea lions, exhibited lower

foraging effort expressed as lower degree of intra-specific

competition compared to sea lions. In a warming climate scenario,

it is possible that fur seals have a survival advantage over sea lions

either by thermoregulatory effects, given that fur seals are smaller

and have a greater surface area to volume ratio from which they

can lose heat or by a lower overall energy requirement.

Although when sympatric, fur seals are more successful; it is

possible that its low plasticity in foraging behavior, shown by their

lower individual variability, has contributed to their overall smaller

population size. Compared to the highly plastic sea lions, fur seals

are more impacted by variations in prey abundance, such as

during El Niño events [30,64], possibly due to a reduced diving

capability added to their lower plasticity.

Furthermore, it is also possible that resource availability and

preferred prey type (during normal years) for fur seals, such as

cephalopods, small schooling fish, myctophids and bathylagids,

[23,29,52] have remained more constant and stable over time,

hence their unchanged diving behavior throughout the years. In

contrast, sea lions foraging behavior has shown to be highly

variable and plastic and sardines, their main prey type on the

Figure 6. Galapagos sea lions and Galapagos fur seals foraging trips and foraging ranges. Galapagos sea lions and Galapagos fur seals
foraging trips (A) and foraging ranges based on 95% contour kernel analysis (B & C) (Mar. & Oct. 2009). The study colony Cabo Douglas, Fernandina
Island is indicated by a yellow circle.
doi:10.1371/journal.pone.0070748.g006

Table 4. Galapagos sea lions (Zw) and Galapagos fur seals (Ag) foraging range and % foraging range overlap.

Day & night overlap Night overlap

Foraging range (Km2)
(Day & night) % of Zw range % of Ag range % of Zw range % of Ag range

Ag x Zw 292.30 34.82 4.87 34.92 4.94

Ag x Zw shallow d. overlap 217.85 25.95 3.63 26.49 3.75

Ag x Zw interm. d. overlap 194.02 23.11 3.23 20.70 2.93

Ag x Zw deep d. overlap 314.13 37.42 5.24 37.67 5.33

Ag 5998.68

Zw 839.57

Zw shallow divers 319.52

Zw intermediate divers 645.39

Zw deep divers 950.97

Foraging range is based on kernel density estimates of dive locations (Mar. & Oct. 2009) at Cabo Douglas, Fernandina Island.
doi:10.1371/journal.pone.0070748.t004
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western populations [23,29] (where they are sympatric with fur

seals), are known to fluctuate widely in abundance over inter-

annual to multi-decadal time scales [65,66].
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