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■ Abstract Whereas comparative physiology documents the range of physiolog-
ical variation across a range of organisms, field physiology provides insight into the
actual mechanisms an organism employs to maintain homeostasis in its everyday life.
This requires an understanding of an organism’s natural history and is prerequisite to
developing hypotheses about physiological mechanisms. This review focuses on a few
areas of field physiology that exemplify how the underlying physiology could not have
been understood without appropriate field measurements. The examples we have cho-
sen highlight the methods and inference afforded by an application of this physiological
analysis to organismal function in nature, often in extreme environments. The specific
areas examined are diving physiology, the thermal physiology of large endothermic
fishes, reproductive physiology of air breathing vertebrates, and endocrine physiology
of reproductive homeostasis. These areas form a bridge from physiological ecology to
evolutionary ecology.

All our examples revolve around the central issue of physiological limits as they
apply to organismal homeostasis. We view this theme as the cornerstone of physiolog-
ical analysis and supply a number of paradigms on homeostasis that have been tested
in the context of field physiology.

INTRODUCTION

As a discipline, physiology examines the mechanisms by which an organism
maintains homeostasis. The broad field of comparative physiology is centered
on adaptive physiological variation among species from different environments.
Field physiology goes one step further, by measuring, with a wide spectrum of
techniques, the mechanisms employed by organisms to carry out their functions
under actual environmental conditions. Therefore, by extension, field physiology
is the examination of homeostatic mechanisms in the field. While we often find
examples of wonderful physiological mechanisms to maintain homeostasis in ex-
treme environments, there are also excellent examples where the organism simply
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avoids the extremes by behavioral or other nonphysiological processes. For in-
stance, small organisms take advantage of microhabitats that enable them to avoid
environmental extremes. Many desert rodents avoid the daytime heat by being
active at night when temperatures are moderate and remain in their burrows dur-
ing the heat of day. In contrast, large mammals such as the oryx or the camel
are too large and cannot escape the desert heat and thus have developed a series
of well-documented physiological and anatomical adaptations to these extreme
temperatures (1, 2).

A cornerstone of field physiology is an appreciation for and understanding of
the natural environment and its associated history. Natural history provides a basis
to develop hypotheses and questions about what physiological problems confront
animals in the field and, therefore, what mechanisms an animal might require to
survive (2–4). One of the innovations in recent years concerns the quantification
of natural history (5) and, specifically, of the role of natural selection in shaping
the evolution of physiological traits (6, 7).

Some of the earliest and best-known examples of physiology in the field started
with a series of simple observations of an organism in its environment. For example,
field work in the California deserts and associated observations of kangaroo rats led
Schmidt-Nielsen and colleagues to ask how these animals deal with the xeric desert
environment (2). Where do they get their water? Is their kidney different from other
mammals? Similarly, observations of marine mammals led Scholander and Irving
et al. to ask how these animals remain submerged for such prolonged periods of time
(8). Do they drink sea water? Do they have an extrarenal salt gland like seabirds,
or do they have a specialized kidney (9)? All these early and fundamental studies
in comparative physiology started with observations of animals in their natural en-
vironment. Even though researchers made their initial observations in the field in
these early studies, they almost always brought animals into the laboratory to inves-
tigate their physiology. This was because laboratory investigation was not only the
obvious solution to the problem, but in many cases it was the only way possible be-
cause the available equipment was large, cumbersome, and not suitable for field use.

Nonetheless, laboratory investigation offers a precision not always possible in
the field, even with the advantages of modern technology. In the laboratory, an
investigator can hold all variables constant except those that are of interest. In
contrast, it is difficult to control the variability in both biotic and abiotic features
of the natural environment. A well-designed field study accepts the variability of
the natural environment but works to insure that the variation between control and
experimental groups is the same. Thus we try to create a situation where the role
or impact of natural variation is reduced or at least accounted for. Finally, the issue
is not whether field versus laboratory investigations are better, but how to achieve
the optimum mix between both.

It would be unrealistic to review the whole range of physiological investigations
that have been carried out in the field. Therefore, this review focuses on a few areas
of field physiology that exemplify how the underlying physiology could not have
been understood without appropriate field measurements. Notably, exploring the
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limits of physiological systems has been a hallmark of physiological analysis
since the Krogh principle was first presented (10). The examples we have chosen
highlight the methods and inference afforded by an application of this physiological
analysis of extreme environments in the natural realm. Furthermore, the areas that
we examine, diving physiology, the thermal physiology of large endothermic fishes,
reproductive physiology of air-breathing vertebrates, and endocrine physiology of
reproductive homeostasis, also bridge from the field of physiological ecology to
evolutionary ecology.

In choosing these examples, we highlight the two conceptual frameworks that
have served to focus our perspective on physiological processes in nature: the
comparative approach applied to populations and species, and the individual ap-
proach applied to differences among individuals within a population (11). Each of
these levels of biological analysis has strengths and weaknesses. For instance, the
individual approach largely ignores the large-scale physiological differentiation
observed at high levels of taxonomic diversity, which is the endpoint of adap-
tational processes (12). However, the individual approach excels at highlighting
the evolutionary factors responsible for divergence in physiology at these higher
levels–natural selection underlies the process of adaptation. It is also possible to
carry out fine-scale analysis of causation with manipulations of physiology or
those individual traits that result from physiological process. When homeostatic
mechanisms fail, the outcome is invariably death. Thus differential survival or re-
production as a function of variation in organismal homeostasis among individuals
is the mechanism by which physiology evolves.

In contrast, the comparative approach has classically been applied to the analysis
of physiology in extreme environments and has identified those species in extreme
environments that have, in some ways, extraordinary adaptations of physiology.
Presumably, these species are near the functional and genetic constraints imposed
on adaptational processes. Allometry is a field of study in physiological analysis
that has provided a classic treatment of constraints on adaptation. Although useful
in identifying such functional limits, differences in environment confound the
analysis as do those biases inherent in a strictly phylogenetic analysis (12). Rarely
are both approaches to the analysis of physiology in natural systems combined. We
highlight a few studies that are exemplary in this regard. We do not, however, supply
a comprehensive review of the evidence for these paradigms, as these have been
developed over the decades in laboratory settings. Where appropriate, we supply
a number of in-depth review citations to these laboratory-developed models and
the extensions to a field setting.

DIVING PHYSIOLOGY

For millions of years a central component of the basic homeostatic machinery of
air-breathing vertebrates has been just that, reliable access to air. The physiology of
diving vertebrates is built around an enhanced capacity to function in the absence of
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Figure 1 Proposed control of blood flow and O2delivery to muscle
that regulates the transition from aerobic to anaerobic metabolism
in a diving seal (13).

oxygen, and is marked by the tolerance by divers of considerable variation in tissue
O2, CO2, and pH. The ability to modify or override normal control mechanisms has
allowed diving reptiles, birds, and mammals to successfully reinvade and exploit
the aquatic environment (Figure 1). The problems faced by diving vertebrates can
be divided into adaptations that deal with pressure and adaptations to prolong their
ability to remain submerged. Adaptations to pressure include mechanical effects
of pressure, as well as the problems coupled with increased solubility and, in some
cases, toxicity of N2 and O2 at high pressure. Adaptations to prolonged time spent
underwater are linked to oxygen stores, how fast they are used, and whether there
is any need for anaerobic metabolism. Given the difficulties of carrying out studies
under high pressure, it is not surprising that the majority of research on diving
has centered on metabolic processes during a dive. This review concentrates on
field studies that have increased our understanding of diving physiology, a broader
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Figure 2 An example of the early experimental apparatus for ex-
periments used a forced-dive approach (20).

appreciation of this activity can be obtained from a number of excellent reviews
(13–15a).

Pioneering studies of the dive response and diving metabolism of mammals
and birds were for years carried out almost exclusively in a laboratory setting
(Figure 2). The early work of Scholander and Irving showed that when a captive
mammal or bird was forced to dive, there was an overall reduction in metabolism
coupled with an increased reliance on anaerobic metabolism as indicated by a
postdive release of lactic acid (Figure 3) (16–18). This dive response was initiated
by a profound bradycardia with associated reductions in cardiac output and blood
flow to peripheral tissues (19). Later work using labeled microspheres confirmed
that blood flow was reduced to all major organs systems except the heart, lung,
and brain (20). Although this pioneering work provided insight into the maximum
physiological response of a diving mammal, its relevance to the natural setting
was unclear. Even Scholander (17) warned that his laboratory measurements might
not adequately describe the physiology of a freely diving animal. The tools and
techniques were barely available for laboratory measurements let alone for studies
of freely living animals. Further evidence that the maximum dive response observed
in a laboratory might not occur in nature was uncovered by Elsner et al., who studied
the dive response of captive trained or unrestrained aquatic mammals. Elsner et al.
found that voluntarily diving subjects exhibited a significantly reduced bradycardia
compared with forced dive animals (Figure 4) (21–24).

A major breakthrough in the study of diving physiology came when Kooyman
capitalized on a novel situation in the Antarctic and literally took the laboratory
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Figure 3 Effects of forced-dive submersion of a 42-kg gray seal,Halichoerus grypus,
on arterial blood chemistry (17).

Figure 4 Heart rate in the harbor seal during trained head submersion (solid boxes)
and forced submersion (solid triangles) (23).
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into the field to study the diving behavior and physiology of freely diving Weddell
seals,Leptonychotes weddelli(25). Weddell seals make a living diving in and
around small openings in fast sea-ice, which is attached to the shore and in certain
situations can cover the surface of the ocean for many kilometers. Because Weddell
seals are adapted to living in this environment, they routinely breathe through small
cracks or holes in the sea-ice. Kooyman exploited this natural ability to create a
novel field laboratory. He moved a seal to an area where there was only a single sea-
ice hole for many kilometers and thus created a situation where the animal had to
return to the same location to breathe. Kooyman and colleagues then placed a small
portable laboratory over this hole and measured the animal’s pulmonary function,
heart rate, and metabolic rate while the animal determined its own diving behavior
(26–28). Similar to the work carried on captive unrestrained diving mammals,
freely diving Weddell seals showed a moderate bradycardia. However, the degree
of bradycardia increased in longer dives and was exhibited at the beginning of the
dive. This indicated that the dive response varied in relation to the metabolic needs
of the seal and that the seal knew whether it was going to make a long or short dive.

Although this work suggested that our understanding of the physiology of div-
ing mammals was flawed, it was not until Kooyman’s group was able to monitor
blood lactic acid levels before and after a dive that they were able to show that
Weddell seals dove aerobically during the majority of their dives (29, 30). This
work showed that lactic acid levels remained constant for dives up to 20 min and
thereafter rapidly increased with increasing dive durations (Figure 5). They con-
cluded that animals could dive aerobically for dives lasting up to 20 min. This work
defined the maximum time an animal could remain submerged without utilizing
anaerobic metabolic pathways; the aerobic dive limit (ADL) was calculated as
ADL (min) = total oxygen store (ml O2)/diving metabolic rate (ml O2 min−1). An
important observation was that when Weddell seals exceeded the aerobic threshold,
the postdive surface interval increased disproportionately relative to dive duration
(29, 30). The greater surface intervals were needed to clear the lactic acid that
accumulated during the dive. One of the disadvantages of anaerobic metabolism
during diving is that while a diver may increase the duration of a single dive, the
total accumulated time spent underwater is reduced. This is because the animal
must spend proportionately more time at the surface clearing lactic acid (13).

The tremendous potential of studying the physiology of freely diving Weddell
seals in McMurdo Sound, Antarctica became apparent to other researchers as well.
A variety of research teams have since used this field laboratory to examine renal
function (31), lung collapse (32), blood gases and hematocrit variation (33, 34),
substrate utilization (35), cardiovascular control (36), blood chemistry homeostasis
during diving (37), diving metabolic rate (38), muscle and aortic temperature
during diving (39), re-examination of aerobic dive limit (40), heart rate and body
temperature variation, myoglobin saturation (41), hormonal control and splenic
contraction (42, 43), hunting behavior (44), and locomotor mechanics (45).

While all of these studies incorporated new technologies and approaches to
working with Weddell seals diving from a sea-ice hole, a few stand out for
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Figure 5 Postdive blood lactate concentrations and diving durations of the em-
peror penguin, Baikal seal, and Weddell seal (15a).

incorporating truly innovative technology. A group led by Hochachka and Zapol
enlisted the engineering expertise of Hill to develop a microprocessor-controlled
system to periodically sample blood during the time the seal dove (35, 36). This
technology was used to document when lung collapse occurred during a dive (32);
changes in blood gases and hematocrit (33); substrate utilization, cardiovascular
control, heart rate, and body temperature variation, myoglobin saturation (41);
hormonal control, and splenic contraction (42, 43).

Although, lung collapse had been observed in simulated dives (46) and in a
freely diving trained dolphin (47), it had never been quantified in a freely diving
animal. The microcomputer-controlled blood sampling system provided confirma-
tion of the functional importance of lung collapse in a freely diving seal (Figure 6)
(32). Marine mammals have an advantage in that, unlike human divers, they exclu-
sively breath-hold dive and thus carry only a limited amount of air in their lungs
during a given dive. Deep-diving marine mammals avoid problems associated with
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Figure 6 Depth of dive combined with serial determinations of PaN2 during dive.
PaN2 values determined early during a dive when pulmonary gas exchange spaces
are collapsing. Samples were collected every 30 s (32).

tissue N2 accumulation by allowing their lungs to collapse during the initial period
of the dive. As the lung collapses, air is expressed into the large bronchioles and
trachea where gas uptake at elevated pressures cannot occur (13, 15a). Given that
N2 and O2 tensions in the blood remain relatively low during the dive, nitrogen
narcosis, decompression sickness, and oxygen toxicity are thought to be avoided.
However, it is still unclear how penguins, small cetaceans, and sea lions avoid
the bends because they can make many repetitive dives on a full lung and do not
always undergo lung collapse (13, 15a, 47).

Although Weddell seals offer a truly exceptional system to study diving physi-
ology, they represent but a single species in a very unusual situation. The only other
diving animal that has been studied in this way is the emperor penguin (48). How-
ever, comparable results have been obtained in a few studies where aerobic dive
limits have been measured using freely diving trained bottlenose dolphins,Tursiops
truncatus(49), California sea lions,Zalophus californianus(50), Beluga whales,
Delphinapteras leucas(51), and captive Baikal seals,Phoca sibirica(52). All these
studies support the ADL model as originally proposed by Kooyman et al. (29).

One of the goals of field physiology is to understand when physiology limits
behavior; therefore, it would be instructive to observe how often and under what
conditions animals diving in nature stay within or exceed the ADL. Recent ad-
vances in technology have allowed simultaneous measurements of diving behavior
and metabolic rate. These studies show that in certain situations diving animals
may exceed their ADL, which implies the potential for anaerobic metabolism. For
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example, Antarctic fur seals,Arctocephalus gazella, rarely exceed their cADL be-
cause they make short shallow dives feeding near the surface. In contrast, the cADL
is routinely exceeded in long and/or deep diving AustralianNeophoca cinereaand
New Zealand,Phocarctos hookerisea lions (Figure 7) (53). Animals that feed at
or near the sea bottom consume large prey that may require prolonged durations
to effectively capture (53–59).

Such measurements are not just of interest to physiologists, they also have
relevance to wildlife managers. For example, it is important to know whether a
species in decline is operating at or close to its maximum physiological capacity,
because if so, it will be less capable of compensating for normal environmental-
or human-caused changes in its environment. In contrast, an animal that is oper-
ating well within its physiological capacity will be more capable of responding
to environmental fluctuations. Such animals would be able to draw on a greater
physiological reserve and pursue prey deeper, or dive longer or forage for greater
periods (53, 56). Over the past decade many fur seals’ populations (South America
fur seal,Arctocephalus australis; New Zealand fur seal,A. forsteri; and Califor-
nia sea lion, respectively) have experienced spectacular population growth that is
in marked contrast to an apparent stability or even decline in all of the sea lions
that feed on or near the bottom (Steller,Eumatopias jubatus; Australian; southern,
Otaria flavescens; and New Zealand sea lion), many of which are sympatric with
near-surface-feeding fur seals (56).

Studies of diving behavior would not have been possible without the amazing
developments in digital electronics, which have provided field biologists with a new
form of biotechnology that allows the study of complex behavior and physiology in
freely ranging animals. This technology has produced data loggers small enough
to be attached to animals while they freely go about their activities (Figure 8).
Data from these tags are obtained when the tags are recovered (archival tags) or
when transmitted via satellite (60, 61). These tags have been used extensively with
marine mammals, fish, birds, and reptiles. Due to the large size and in some cases
the ease of capture of marine mammals, the technology for attached instrumention
was initially developed for use with these animals and has been used to record the
ambient acoustic environment (62–64), heart rate (65), ventilation rate (66), swim
speed (58, 67, 68) and acceleration (69, 70).

Satellite tags are used when one cannot recover the data logger from the animal.
A limitation of this technology is that the satellite transmitter must be out of
the water to communicate with an orbiting satellite, therefore the technology has
mainly been used on air-breathing vertebrates that surface regularly such as marine
birds (71, 72), sea turtles (73), marine mammals (74, 75) and most recently sharks
(61, 76). An example of the kind of data that can be acquired with this technology
is shown in Figure 9.

Future Directions

A major area of research in diving physiology that could benefit from field mea-
surements is how deep-diving marine mammals and birds handle the effects of

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
4.

66
:2

09
-2

38
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
C

ru
z 

on
 1

1/
21

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



5 Feb 2004 23:38 AR AR205-PH66-09.tex AR205-PH66-09.sgm LaTeX2e(2002/01/18)P1: IBC

FIELD PHYSIOLOGY 219

Figure 7 The diving pattern of Antarctic fur seal,Arctocephalus gazella, the Aus-
tralian sea lion,Neophoca cinerea, and the New Zealand sea lion,Phocarctos hookeri,
are compared. All axes are expressed in the same absolute units to facilitate compari-
son. The two sea lions feed at or near the bottom, whereas the fur seal feeds near the
sea surface (53).
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pressure. There are two aspects to this work: those that focus on hydrostatic effects
of pressure and those associated with effects of dissolved gases such as nitrogen.
Specifically, are deep divers susceptible to high-pressure nervous syndrome? How
do repetitively diving marine mammals and birds that do not go through lung col-
lapse avoid decompression sickness (15a, 77)? Further examination of the role of
physiology in determining the optimal diving pattern would also be a productive
area of research, as the necessary technology currently exists.

ENDOTHERMIC FISHES

A major advantage of endothermy is the ability to occupy and travel between dif-
ferent thermal habitats, while critical organ system, such as the nervous system and
aerobic muscles can be maintained within a narrow set of biochemically optimal
temperatures (78). For example, marine mammals and sea birds can go from a
warm tropical island or surface waters to cold, food-rich regions of the ocean, all
the while keeping their core body temperatures high and constant. However, only
27 out of 25,000 species of fish and sharks have evolved some form of regional
endothermy (79). As gill breathers, fishes cannot become true endotherms because
water contains only 1/40th as much oxygen, although it conducts heat 25 times
faster than air (79). As a result, blood passing through the gills always equilibrates
with the ambient thermal environment. Thus the vast majority of fishes remain
within 1 to 2◦C of the ambient environment (79).

Nevertheless, regional endothermy has developed along two different paths: one
typified by tunas and sharks that conserve metabolic heat in the muscle, viscera,
and brain and one recently discovered in billfishes where only the cranial cavity
is warmed (79, 80). Regardless, common prerequisites for regional endothermy
are large body size, a heat source, and a vascular system (counter-current heat
exchanger) to conserve the heat. The physiological, biochemical, and anatomical
mechanisms of tuna endothermy have been well documented (79, 81–89). Thir-
teen species of Scombrid tunas and 5 species of lamnid sharks exhibit regional
endothermy, in some cases maintaining internal temperatures an astounding 21◦C
above ambient (79, 80, 90–92). Elevated temperatures in tuna are maintained by
the internal location of the red oxidative muscle coupled with a vascular supply
that passes blood through a counter-current heat exchanger, allowing retention of
heat produced by the red muscle. In billfish, the brain and eyes are kept up to 13◦C
above ambient by a novel heater organ derived from the skeletal muscle around
the eyes (79).

Mapping the key features of endothermy on a molecular phylogeny of the teleost
fishes indicates that endothermy evolved independently at least three times in the
Scombrid tunas, whereas cranial heaters evolved at least twice in the billfishes
(Figure 10) (93). These independent origins of endothermy suggest that this en-
ergetically expensive strategy was under strong selection. Furthermore, the three
independent origins of endothermy correspond to the independent expansion of
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Figure 10 Phylogeny of the Scombroidei on the basis of a parsimony tree derived
from a 600 base pair of cytochromeb. The arrows associated with specific nodes
refer to (A) modification of the superior rectus muscle into a thermogenic organ,
(B) modification of the lateral rectus muscle into a thermogenic organ, (C) systemic
endothermy using vascular counter-current heat exchanges in the muscle, and (D) some
internalization of red muscle along the horizontal septum (93).
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Figure 11 A depth record from a swordfish,X. gladius, illustrating their diurnal
vertical migration. Swordfish pass through the thermocline and encounter large
changes in the water temperature at dusk and at dawn. Data were derived via acoustic
telemetry (94).

these three lineages into cool temperate waters. This analysis supports the role
of fish endothermy as a physiological adaptation associated with niche expansion
(93). However, an understanding of the importance of fish endothermy to niche
expansion can be understood only by examination of the physiology of these fishes
operating in nature.

Physiological measurements of freely ranging fishes were until recently carried
out with acoustic tracking devices (61, 89, 94, 95). This was extremely difficult
because it required real-time tracking by ship and thus tracks were limiting to
just five or six days and only a single tagged animal could be followed. How-
ever, this technology provided the first real insight into the importance of regional
endothermy to fishes in nature (Figure 11). For example, swordfish,Xipias glad-
ius, spend the night in the warm surface waters (25◦C), but during the day they
vertically migrate to much deeper (400–600 m) and colder (8–9◦C) waters (94).
However, what is most impressive is that in spite of the large deviations in ambient
temperature, the cranial temperature of the swordfish remains surprisingly constant
(Figure 12).

More recently archival tags have been deployed on fishes and sharks, thereby
allowing collection of data for greater time periods independent of a research ves-
sel (61, 89). For use on fish, the archival tags are surgically implanted inside the
peritoneal cavity. Pressure and internal temperature sensors are located within the
body of the tag. A stalk protruding from the archival tag carries the light and water
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Figure 12 Temperature telemetry record from a swordfish,X. gladius, showing how
effective the cranial heater is in keeping the brain temperature elevated and relatively
constant (94).

temperature sensors externally. Data are stored in the tag until it is recovered,
usually by fishermen. Information on the location, diving behavior, ambient, and
internal temperature preferences can be obtained. To date blue fin tuna,Thun-
nus thynnus, have been tracked for 3.6 years (61, 89). Similarly, even though
blue fin tuna repeatedly venture into cold waters, their internal body tempera-
ture remains relatively constant and elevated (Figure 13). Finally the critical role
of large body size to regional endothermy can be seen in the greater thermal
variability in a small tuna compared with a larger tuna of the same species (96)
(Figure 14).

The phylogenetic analysis as used for billfish illustrates the power of the phy-
logenetic perspective in elucidating the origins of traits, whereas the detailed in-
dividual measurements on free-ranging fish with high-tech recording equipment
provides crucial information on the actual natural history context that we noted
above. More syntheses using both methods will be crucial in unraveling the origin
of physiological adaptations and the environmental conditions that contributed to
their evolution and maintenance. An emergent theme throughout this review is the
profound role behavior has in shaping selection on physiological traits. In the case
of billfish, maintenance of high cranial temperatures is thought to be the direct
result of selection on the ability these fish to be effective predators across a range
of thermal habitats, which requires elevated and relatively constant temperatures
for efficient neurophysiological processing (the hypothesis underlying high cranial
temperatures in billfish).

Future Directions

Although a significant amount of information exists on the physiological and bio-
chemical adaptations of endothermic fishes, relatively little is known about how
these processes are integrated in nature (88). Given the considerable advances in
tagging technology, there is a tremendous potential to gain significant insight into
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the physiology and ecology of these interesting and important apex oceanic preda-
tors. Combining tags with modern satellite remote-sensing techniques will enable
us to put these magnificent animals in the context of their oceanic environment
(61, 89).

REPRODUCTIVE PHYSIOLOGY

The limits on reproductive physiology have been a focus of physiological ecology
since early field observations noted that animals in nature can exceed three to four
times basal metabolic rate for extended periods of time during reproduction (97–
101). Since these early observations, researchers have focused their analyses on
the short-term evolutionary consequences of such physiological effort on fitness
(102).

Reproduction is thought to be costly largely because of the energetic demands
imposed on parents during the acquisition of resources for progeny (77, 99, 102,
103). Two fitness consequences have been the focus: the effects of energy expen-
diture on progeny survival (102) and the effects of energy expenditure on adult
survival to future reproductive episodes. The former issue relates to the first funda-
mental trade-off of life history analysis (104), referred to as the offspring size and
offspring number trade-off, whereas the latter issue relates to the second trade-off,
referred to as costs of reproduction in parents (105). With one possible exception
(106), the relationships between energy expenditure in the wild [expressed as daily
energy expenditure (DEE) or field metabolic rate (FMR)] has not been simulta-
neously assessed for both components of fitness, even though such information
might be useful in interpreting the phase of life history (progeny versus adult fitness
component) that is most sensitive to energy limitation imposed on adults. In such
situations, it is possible for the unmeasured component of fitness to be related to
DEE (DEE of parent affects progeny survival), while the measured component of
fitness is not correlated with DEE (DEE of parent does not affect adult survival).
This would result in a failure to find an association between DEE and fitness, even
though such an association exists.

In brief, researchers simultaneously assess field metabolic rate with the doubly
labeled water (DLW) method (107, 108) to measure DEE on reproduction of
lizards, birds, and mammals (109, 110). Estimates of DEE are often made in
conjunction with detailed estimates of behavioral time-budgets (77, 103, 111, 112),
which when used in conjunction with laboratory estimates (e.g., O2 consumption)
of each behavior (e.g., cost-of-flight, cost-of-hovering flight, running, lactation,
etc.) can be used to partition DEE to specific metabolic episodes by integrating the
behavior over time. Furthermore, direct comparisons of time-budget-derived DEE
and DLW-derived DEE over the entire period during which DLW is measured also
can test the validity of the DLW method.

As an important experimental adjunct to methods for assessing DEE, many
researchers invariably manipulate reproductive effort by litter size or brood size;
such manipulations (augmentation or reduction) (99, 111, 113–116) provide a
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causal measure of the relationship between DEE and fitness. In addition, other
researchers have used food deprivation experiments (to progeny) to increase effort
expended by the parents (111, 117). This allows for the inference of direct causal
effect of offspring number on parental DEE, and for the direct causal inference
of the effect of offspring number (or physiological effort) on parental survival
to future reproductive episodes, offspring survival, or the success of parents in
producing offspring on future reproductive episodes. Other studies have compared
differences in the DEE and energy investment between closely related species with
different foraging behaviors (103), in different habitats (118), or between marine
mammals and seabirds utilizing similar resources in the same habitat (119).

Analyses of the two life history trade-offs from a physiological perspective
has had mixed results regarding the importance of physiological ceilings during
reproduction as having a selective impact with cascading effects on fitness traits.
Lack of a relation as a state of the real patterns must be conditioned upon the
caveat noted above regarding the action of selection during adult versus progeny
phases of the life history and its correlation with DEE in adults. In spite of this
caveat, the discrepancies between the studies highlight the different physiological
pathways in vertebrates for basic life history function [avian feeding strategies,
huddling behavior on parental effort, granivory-insectivory (116, 120, 121) versus
carnivory (111) or versus mammalian lactation (114, 119, 122)]. For example, in
the European kestrel,Falco tinnunculus, manipulation of parental effort via clutch
size manipulation has a clear effect on the elevation of parental effort in both
parents, and the physiological effort has a clear impact on the survival of adult birds
to a second clutch and future reproductive episodes (123, 124). Furthermore, food
removal experiments indicate that kestrels are capable of nearly doubling energetic
effort on a short-term basis (1.5 weeks) (111). Similar studies on a granivorous-
insectivorous species, the great tit,Parus major, failed to find an associated link
between DEE and fitness of cost of reproduction, even though manipulations of
parental effort have demonstrated such links (125).

Similarly, in mammalian systems, detailed estimates of DEE for females dur-
ing reproduction are available for the North American species the Golden-Mantled
Ground Squirrel,Spermophilus saturatus, and red squirrels,Tamiasciurus hudson-
icus(77, 114, 122). The most costly period of DEE for female squirrels is lactation.
No correlation between litter size and DEE was found, but rather all females ap-
proached a similar physiological ceiling (114, 122). As patterns of reproductive
costs and investment vary with body size, it would be useful to know how the
patterns of investment vary in large mammals.

Although the energetic costs of reproduction have been studied in ungulates,
primates, and pinnipeds, no study has assessed the relationship between DEE and
fitness. Such fitness relations would be useful in understanding the role of physi-
ology in shaping the evolution of life history patterns. A common feature of these
highly precocial animals is that they always give birth to a single large offspring
(126). Measurements of DEE during lactation in pinnipeds show two markedly
different reproductive costs. The cost of reproduction in true seals (Phocidae) is
quite economical (1.5–3 times BMR), whereas it is quite high (4–6 times BMR) in
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sea lions and fur seals (Otariidae) (126). This in part is the result of the differences
in the way that females forage and provision their offspring. True seal females
provision their pup primarily from stored energy reserves, often fasting during
lactation, whereas sea lions and fur seals intermittently forage at sea returning to
suckle the pup on shore (126).

Reproductive Endocrinology

The examples of reproductive physiology in nature illustrate how laboratory anal-
ysis of the homeostatic processes of endocrine regulation has led to a series of
elegant analyses of such homeostasis in extreme environments. The advent of
radioimmunoassay of reproductive hormones in free-ranging animals revolution-
ized our view of the endocrine system in action. In addition, the ability to insert
hormone-filled implants into free-ranging animals has allowed for an analysis of
causation that rivals laboratory studies, albeit in an uncontrolled field setting.

Our goal in this brief review is not to treat the endocrine axes in complete detail
but rather to provide an overview of how such tools have been useful in unravel-
ing the complexities of hormone interaction in nature. This example is useful in
that endocrine homeostasis is well characterized, as are the cascading effects on
target physiological traits and reproductive physiology [reviewed in (127–129)].
Endocrine homeostasis during reproduction arises from the action of protein hor-
mones (gonadotropins) secreted by the hypothalamus and pituitary, which stimu-
lates the gonads to produce the sex-specific steroid hormones. The up-regulation
in the production of these steroid hormones in turn down-regulates the production
of the gondadotropins (Figure 15). This two-part endocrine system is referred to as
the hypothalamic-pituitary-gonadal (HPG) axis, and it represents a negative reg-
ulatory loop in that steroid hormones have a set point that is not exceeded owing
to the negative regulation exerted by the steroids on the gonadotropins. Given that
levels of steroid hormones achieve stable population-specific values and that these
steroids control many physiological processes, we can view this as the elements
of physiological homeostasis. The steroid hormones in turn up-regulate the tran-
scription of specific genes related to physiology through accessory DNA-binding
carrier proteins and response elements on the DNA [e.g., estrogen response ele-
ments (ERE)]. This regulation of behavioral, metabolic, and other physiological
traits has been the focus of field endocrinology.

The link between individual and environmental extreme is regulated by another
endocrine axis, the hypothalamic-pituitary-adrenal (HPA) axis (128, 129). Short-
term and long-term regulations of sex steroids and their effects on metabolism are
governed by both transient and chronic elevation of glucocorticosteroids, which
have a regulatory function and a basic metabolic function. The glucocorticoids
such as corticosterone can down-regulate production of the reproductive hormones
(129) and also override the effects of steroid hormones on the expression of phys-
iological and behavioral traits (128). In addition, corticosterone per se regulates
gluconeogenesis and the breakdown of muscle tissue, serving as a direct regula-
tor of metabolic physiology (130). It is for these reasons that field endocrinology
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has focused on the action of corticosterone on a diverse array of physiological
traits and how such traits are modulated when environmental conditions become
either unfavorable or favorable for reproduction. In addition, corticosterone not
only regulates physiology in the context of abiotic stressors (128), it also regulates
physiology in the context of biotic stressors such as predators and conspecifics
(129). Salient observations of nesting birds during stressful events such as snow-
storms indicate that corticosterone plays a major role in modulating reproduction
during stress, reducing levels of the gonadotropin lutenizing hormone (LH), which
may be related to nest abandonment (131).

The actual control of reproductive physiology has turned out to be decidedly
complicated (Figure 13). Initial experiments using hormone implants in nature typ-
ically involved a treatment in which a single hormone implant was tested against
sham-implanted subjects (132). It was rapidly apparent that hormone interactions
or hormone and environment interactions were largely responsible for the effects
on physiology. Multihormone implants were developed or hormone implants were
used in tandem with other manipulations ([e.g., food manipulation (133)] to fur-
ther test these findings. Another basic technique was to manipulate a salient axis
of the endocrine system and measure the corresponding changes in other axes
[e.g., effect of gonadotropin-releasing hormone on LH and testosterone (134),
effect of corticosterone of the HPA on LH of the HPG, effect of hypothalamus-
pituitary control over corticosterone response (135)]. Another approach was to
implant combinations of hormones to study the effect of hormone interaction on
behavior and physiology (e.g., overriding effect of corticosterone over testosterone,
corticosterone plus testosterone, no corticosterone, no testosterone sham-implants)
(136). Manipulations of reproductive effort have also been used in tandem with
measurement of plasma hormone changes (137).

The basic hypothesis concerning the role of corticosterone as a global signal of
environmental stress has been invalidated by the observation that corticosterone
has multiple avenues for modulating physiology. For example, the classic idea that
corticosterone is immunosuppressive (129, 138) has been overturned with field im-
plant experiments and immune challenge experiments (139). However, it is worth
emphasizing that corticosterone has many effects on physiology in addition to af-
fecting the immune system (128). Corticosterone enhances gluconeogenesis and
thereby elevates blood glucose levels (128, 129), and such an effect may, at least in
the short term, improve several aspects of condition including immunocompetence.
Nevertheless, the role of corticosterone in modulating stressful environments has
solid support from a number of studies (137, 140–142) and this information will be
crucial in interpreting the action of corticosterone in stress during the expression
of reproductive physiology.

Future Directions

Measurements of DEE during reproduction and its impacts on fitness are needed
for other vertebrates including lizards, and more extensive assessment of fitness
traits is required for mammals. While studies on lizards have focused on the
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measurement of DEE (107, 109), none has yet applied the techniques of exper-
imental manipulation that are currently available. In a similar vein, mammalian
studies have relied on litter manipulations to test life history theory, but only re-
cently have litter manipulations been applied in tandem with measurements of
DEE (114). Furthermore, new methods of endocrine manipulations of litter size
are available (e.g., follicle stimulating hormone), which have already been used in
reptilian systems. Although there are studies on the costs of reproduction in females
and the impact of brood size manipulations, there are surprisingly few studies of
the impact of elevated male hormones on male DEE, despite this protocol being
widely used in the area of field behavioral ecology. A careful causal dissection of
the impact of male reproductive hormones and energy would be most informative.

Such endocrine manipulations of life history traits are preferable over simple
litter size manipulations in that hormones can trigger a physiological cascade of
events and thus are more likely to capture all of the salient physiologically based
costs (143). Surprisingly, the actual metabolic costs of immune challenges have not
been assessed with DLW methods. It would be most informative to test animals
in the wild with novel antigens and measure the cost of such immune assaults.
Furthermore, such manipulations of immune function when carried out with ma-
nipulations of reproductive hormones (139) might address the synergistic impacts
of immune and reproductive function on DEE and the existence of physiological
ceilings during reproduction.

CONCLUDING REMARKS

We have just touched the surface of the considerable number of physiological
investigations carried out in the field. However, it is apparent even from this limited
review that a vast array of tools and approaches are available to address fundamental
questions of physiological homeostasis and how these processes have evolved.
Given that field physiology has its origins in comparative physiology, it is important
to recognize the pitfalls if phylogeny is not appropriately considered (12, 110).

Recent phylogenetic methods that provide corrections for statistical biases have
been developed owing to a lack of independence associated with taxonimically re-
lated species (144a). The method of phylogenetically independent contrasts is one
of the most widely used methods, and it creates contrasts (e.g., the difference)
between the values of extant taxa and hypothetical ancestral states that are con-
structed with branch lengths in the phylogeny. It is really a linear transformation
of the data that constructs a data set of independent data points, removing the
effect of phyologeny. Notably, these phylogenetic methods have been applied to
the scaling of FMR (110). A previously reported difference in the scaling of FMR
between marsupials (e.g., 0.58) and eutherian mammals (0.81) (109) is not sup-
ported when the allometric regression is corrected using the method of phyloge-
netically independent contrast (0.71 versus 0.82). Use of modern phylogenetic
methods are preferable because the estimates of slope are unbiased by the distri-
bution of phylogenetic data, even though some groups may be under-represented.
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Field physiology has an important role in the maintenance of biodiversity and
conservation. As the pace of habitat destruction, over-harvesting, and climate
change increases it will be critical to understand which organism can accom-
modate to these human-induced alterations in their habitat. The effects of climate
change are myriad (144, 145). Whereas the general trend is toward a higher mean
temperature, regional climate models indicate that the changes will be more com-
plex (145). Some habitats will become wetter, others dryer, some will get warmer,
some will get more precipitation, and others may change very little. In all cases,
an understanding of the physiological capability of organisms to tolerate these
changes can come only from field investigations of the organism in its habitat as
its response is multifaceted (144). This review has shown that animals have the
capacity to respond to varying levels of food intake and/or energy expenditure dur-
ing reproduction. Although a simple relationship is expected between reproductive
output and cost, animals can accommodate considerable variation in energy intake
and expenditure while still successfully producing offspring. Similarly, these re-
sponses are mediated by a complex endocrine system that is just beginning to be
understood in the context of the environment. We have shown that some diving be-
haviors are fundamentally more difficult and thus likely to put specific organisms
in greater jeopardy. Finally, endothermic tunas, billfish, and sharks are currently
over-fished at a rate that cannot be sustained (146). All the examples used here
have potential importance to the conservation of biodiversity because it is critical
to know which organisms have physiological plasticity that can accommodate en-
vironmental change. Field physiology can and should have a role in solving these
complex environmental issues and can at least help to identify the organisms most
in need of help.
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FIELD PHYSIOLOGY C-1

Figure 8 An Australian sea lion, Neophoca cinerea, mother and her pup are shown
with data loggers attached. The most forward device is a satellite transmitter, the mid-
dle device is a time swim-speed and depth recorder, and the last item is a VHF radio.
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C-2 COSTA ■ SINERVO

Figure 9 A pseudo three-dimensional representation of the diving behavior and
movement patterns of crabeater seals, Lobodon carcinophagus, studied in the Western
Antarctic Peninsula near Adelaide Island. Data were collected with a satellite-linked
data relay. Image produced by the Sea Mammal Research Unit St. Andrews Scotland
(D.P. Costa, J.M. Burns & M.A. Fedak, unpublished data).
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